Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propositional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Inference rules === Natural deduction inference rules, due ultimately to [[Gerhard Gentzen|Gentzen]], are given below.<ref name=":38" /> There are ten primitive rules of proof, which are the rule ''assumption'', plus four pairs of introduction and elimination rules for the binary connectives, and the rule ''reductio ad adbsurdum''.<ref name=":35" /> Disjunctive Syllogism can be used as an easier alternative to the proper β¨-elimination,<ref name=":35" /> and MTT and DN are commonly given rules,<ref name=":38" /> although they are not primitive.<ref name=":35" /> {| class="wikitable" style="margin:auto;" |+ List of Inference Rules |- ! Rule Name ! Alternative names ! Annotation !Assumption set ! Statement |- | Rule of Assumptions<ref name=":38" />|| Assumption<ref name=":35" />|| '''A<ref name=":38" /><ref name=":35" />''' |The current line number.<ref name=":35" />|| At any stage of the argument, introduce a proposition as an assumption of the argument.<ref name=":38" /><ref name=":35" /> |- | Conjunction introduction|| Ampersand introduction,<ref name=":38" /><ref name=":35" /> conjunction (CONJ)<ref name=":35" /><ref name=":39"/>|| '''m, n &I<ref name=":35" /><ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi</math> and <math>\psi</math> at lines '''m''' and '''n''', infer <math>\varphi ~ \& ~ \psi</math>.<ref name=":38" /><ref name=":35" /> |- | Conjunction elimination|| Simplification (S),<ref name=":35" /> ampersand elimination<ref name=":38" /><ref name=":35" />|| '''m &E<ref name=":35" /><ref name=":38" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi ~ \& ~ \psi</math> at line '''m''', infer <math>\varphi</math> and <math>\psi</math>.<ref name=":35" /><ref name=":38" /> |- | Disjunction introduction<ref name=":38" />|| Addition (ADD)<ref name=":35" />|| '''m β¨I<ref name=":35" /><ref name=":38" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi</math> at line '''m''', infer <math>\varphi \lor \psi</math>, whatever <math>\psi</math> may be.<ref name=":35" /><ref name=":38" /> |- | Disjunction elimination|| Wedge elimination,<ref name=":38" /> dilemma (DL)<ref name=":39" />|| '''j,k,l,m,n β¨E<ref name=":38" />''' |The lines '''j,k,l,m,n'''.<ref name=":38" />|| From <math>\varphi \lor \psi</math> at line '''j''', and an assumption of <math>\varphi</math> at line '''k''', and a derivation of <math>\chi</math> from <math>\varphi</math> at line '''l''', and an assumption of <math>\psi</math> at line '''m''', and a derivation of <math>\chi</math> from <math>\psi</math> at line '''n''', infer <math>\chi</math>.<ref name=":38" /> |- |Disjunctive Syllogism |Wedge elimination (β¨E),<ref name=":35" /> modus tollendo ponens (MTP)<ref name=":35" /> |'''m,n DS<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" /> |From <math>\varphi \lor \psi</math> at line '''m''' and <math>- \varphi</math> at line '''n''', infer <math>\psi</math>; from <math>\varphi \lor \psi</math> at line '''m''' and <math>- \psi</math> at line '''n''', infer <math>\varphi</math>.<ref name=":35" /> |- | Arrow elimination<ref name=":35" />|| Modus ponendo ponens (MPP),<ref name=":38" /><ref name=":35" /> modus ponens (MP),<ref name=":39" /><ref name=":35" /> conditional elimination || '''m, n βE<ref name=":35" /><ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi \to \psi</math> at line '''m''', and <math>\varphi</math> at line '''n''', infer <math>\psi</math>.<ref name=":35" /> |- | Arrow introduction<ref name=":35" />|| Conditional proof (CP),<ref name=":39" /><ref name=":38" /><ref name=":35" /> conditional introduction || '''n, βI (m)<ref name=":35" /><ref name=":38" />''' |Everything in the assumption set at line '''n''', excepting '''m''', the line where the antecedent was assumed.<ref name=":35" />|| From <math>\psi</math> at line '''n''', following from the assumption of <math>\varphi</math> at line '''m''', infer <math>\varphi \to \psi</math>.<ref name=":35" /> |- | Reductio ad absurdum<ref name=":38" />|| Indirect Proof (IP),<ref name=":35" /> negation introduction (βI),<ref name=":35" /> negation elimination (βE)<ref name=":35" />|| '''m,''' '''n''' '''RAA''' '''(k)<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n''', excluding '''k''' (the denied assumption).<ref name=":35" />|| From a sentence and its denial{{refn|group=lower-alpha|To simplify the statement of the rule, the word "denial" here is used in this way: the ''denial'' of a formula <math>\varphi</math> that is not a ''negation'' is <math>- \varphi</math>, whereas a ''negation'', <math>- \varphi</math>, has two ''denials'', viz., <math>\varphi</math> and <math>- - \varphi</math>.<ref name=":35" />}} at lines '''m''' and '''n''', infer the denial of any assumption appearing in the proof (at line '''k''').<ref name=":35" /> |- | Double arrow introduction<ref name=":35" />|| Biconditional definition (''Df'' β),<ref name=":38" /> biconditional introduction|| '''m, n β I<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi \to \psi</math> and <math>\psi \to \varphi</math> at lines '''m''' and '''n''', infer <math>\varphi \leftrightarrow \psi</math>.<ref name=":35" /> |- | Double arrow elimination<ref name=":35" />|| Biconditional definition (''Df'' β),<ref name=":38" /> biconditional elimination|| '''m β E<ref name=":35" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi \leftrightarrow \psi</math> at line '''m''', infer either <math>\varphi \to \psi</math> or <math>\psi \to \varphi</math>.<ref name=":35" /> |- | Double negation<ref name=":38" /><ref name=":39" />|| Double negation elimination|| '''m DN<ref name=":38" />''' |The same as at line '''m'''.<ref name=":38" />|| From <math>- - \varphi</math> at line '''m''', infer <math>\varphi</math>.<ref name=":38" /> |- | Modus tollendo tollens<ref name=":38" />|| Modus tollens (MT)<ref name=":39" />|| '''m, n MTT<ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":38" />|| From <math>\varphi \to \psi</math> at line '''m''', and <math>- \psi</math> at line '''n''', infer <math>- \varphi</math>.<ref name=":38" /> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)