Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Quaternion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Links and monographs=== {{refbegin|30em}} * {{cite web |title=Quaternion Notices |url=https://quaternionnews.commons.gc.cuny.edu/ }} Notices and materials related to Quaternion conference presentations * {{springer|title=Quaternion|id=p/q076770}} * {{cite web |title=Frequently Asked Questions |work=Matrix and Quaternion |id=1.21 |url=http://www.j3d.org/matrix_faq/matrfaq_latest.html|ref=none}} * {{cite web |first=Doug |last=Sweetser |title=Doing Physics with Quaternions |url=http://world.std.com/~sweetser/quaternions/qindex/qindex.html |ref=none }} * [https://web.archive.org/web/20050408193941/http://www.fho-emden.de/~hoffmann/quater12012002.pdf Quaternions for Computer Graphics and Mechanics (Gernot Hoffman)] * {{cite arXiv |title=The Physical Heritage of Sir W. R. Hamilton |eprint=math-ph/0201058|last1=Gsponer|first1=Andre|last2=Hurni|first2=Jean-Pierre|year=2002|ref=none }} * {{cite web |first=D.R. |last=Wilkins |title=Hamilton's Research on Quaternions |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Quaternions.html |ref=none }} * {{cite web |first=David J. |last=Grossman |title=Quaternion Julia Fractals |url=http://www.unpronounceable.com/julia/ |ref=none }} 3D Raytraced Quaternion [[Julia set|Julia Fractals]] * {{cite web |title=Quaternion Math and Conversions |url=http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm|ref=none }} Great page explaining basic math with links to straight forward rotation conversion formulae. * {{cite web |first=John H. |last=Mathews |title=Bibliography for Quaternions |url=http://math.fullerton.edu/mathews/c2003/QuaternionBib/Links/QuaternionBib_lnk_3.html|archive-url=https://web.archive.org/web/20060902200454/http://math.fullerton.edu/mathews/c2003/QuaternionBib/Links/QuaternionBib_lnk_3.html |archive-date=2006-09-02 |ref=none }} * {{cite web |title=Quaternion powers |publisher=GameDev.net |url=https://www.gamedev.net/articles/programming/math-and-physics/quaternion-powers-r1095/|ref=none }} * {{cite web |first=Andrew |last=Hanson |title=Visualizing Quaternions home page |url=http://books.elsevier.com/companions/0120884003/vq/index.html |archive-url=https://web.archive.org/web/20061105174313/http://books.elsevier.com/companions/0120884003/vq/index.html |archive-date=2006-11-05 |ref=none }} * {{cite journal |first=Charles F.F. |last=Karney |title=Quaternions in molecular modeling |journal=J. Mol. Graph. Mod. |volume=25 |issue=5 |pages=595–604 |date=January 2007 |doi=10.1016/j.jmgm.2006.04.002 |pmid=16777449 |arxiv=physics/0506177|bibcode=2007JMGM...25..595K |s2cid=6690718 |ref=none }} * {{cite arXiv |first=Johan E. |last=Mebius |title=A matrix-based proof of the quaternion representation theorem for four-dimensional rotations |year=2005 |eprint=math/0501249|ref=none }} * {{cite arXiv |first=Johan E. |last=Mebius |title=Derivation of the Euler–Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations |year=2007 |eprint=math/0701759|ref=none }} * {{cite web |title=Hamilton Walk |publisher=Department of Mathematics, [[NUI Maynooth]] |url=http://www.maths.nuim.ie/links/hamilton.shtml|ref=none }} * {{cite web |title=Using Quaternions to represent rotation |work=OpenGL:Tutorials |url=http://gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation |archive-url=https://web.archive.org/web/20071215235040/http://gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation |archive-date=2007-12-15 |ref=none }} * David Erickson, [[Defence Research and Development Canada]] (DRDC), Complete derivation of rotation matrix from unitary quaternion representation in DRDC TR 2005-228 paper. * {{cite web |first=Alberto |last=Martinez |title=Negative Math, How Mathematical Rules Can Be Positively Bent |publisher=Department of History, University of Texas |url=https://webspace.utexas.edu/aam829/1/m/NegativeMath.html|archive-url=https://web.archive.org/web/20110924161347/https://webspace.utexas.edu/aam829/1/m/NegativeMath.html |archive-date=2011-09-24 |ref=none }} * {{cite web |first=D. |last=Stahlke |title=Quaternions in Classical Mechanics |url=http://www.stahlke.org/dan/phys-papers/quaternion-paper.pdf|ref=none }} * {{cite arXiv |last1=Morier-Genoud |first1=Sophie |first2=Valentin |last2=Ovsienko |title=Well, Papa, can you multiply triplets? |year=2008 |class=math.AC |eprint=0810.5562|ref=none }} describes how the quaternions can be made into a skew-commutative algebra graded by {{nowrap|'''Z'''/2 × '''Z'''/2 × '''Z'''/2}}. * {{cite web |first=Helen |last=Joyce |title=Curious Quaternions |date=November 2004 |publisher=hosted by [[John Baez]] |url=http://plus.maths.org/content/os/issue32/features/baez/index|ref=none }} * {{cite web |first=Luis |last=Ibanez |title=Tutorial on Quaternions. Part I |url=http://www.itk.org/CourseWare/Training/QuaternionsI.pdf |access-date=2011-12-05 |archive-url=https://web.archive.org/web/20120204055438/http://www.itk.org/CourseWare/Training/QuaternionsI.pdf |archive-date=2012-02-04 |url-status=dead |ref=none }} [https://web.archive.org/web/20121005003247/http://www.itk.org/CourseWare/Training/QuaternionsII.pdf Part II] (PDF; using Hamilton's terminology, which differs from the modern usage) * {{cite journal |first1=R. |last1=Ghiloni |first2=V. |last2=Moretti |first3=A. |last3=Perotti |title=Continuous slice functional calculus in quaternionic Hilbert spaces |journal=Rev. Math. Phys. |volume=25 |pages=1350006–126 |year=2013 |issue=4 |doi=10.1142/S0129055X13500062 |arxiv=1207.0666|bibcode=2013RvMaP..2550006G |s2cid=119651315 |ref=none }}<br />{{cite journal |first1=R. |last1=Ghiloni |first2=V. |last2=Moretti |first3=A. |last3=Perotti |title=Spectral representations of normal operators via Intertwining Quaternionic Projection Valued Measures |journal=Rev. Math. Phys. |volume=29 |pages=1750034 |year=2017 |doi=10.1142/S0129055X17500349 |arxiv=1602.02661|s2cid=124709652 |ref=none }} two expository papers about continuous functional calculus and spectral theory in quanternionic Hilbert spaces useful in rigorous quaternionic quantum mechanics. * [https://play.google.com/store/apps/details?id=com.MoritzWillProduction.Quaternions Quaternions] the Android app shows the quaternion corresponding to the orientation of the device. * [https://www.gamedeveloper.com/programming/rotating-objects-using-quaternions Rotating Objects Using Quaternions] article speaking to the use of Quaternions for rotation in video games/computer graphics. {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)