Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Derivation of the theta values == === Identity of the Euler beta function === In the following, three important theta function values are to be derived as examples: This is how the [[Euler beta function]] is defined in its reduced form: :<math>\beta(x) = \frac{\Gamma(x)^2}{\Gamma(2x)}</math> In general, for all natural numbers <math>n \isin \mathbb{N}</math> this formula of the Euler beta function is valid: :<math>\frac{4^{-1/(n + 2)}}{n + 2}\csc\bigl(\frac{\pi}{n + 2}\bigr)\beta\biggl[\frac{n}{2(n + 2)}\biggr] = \int_{0}^{\infty} \frac{1}{\sqrt{x^{n+2} + 1}} \,\mathrm {d}x</math> === Exemplary elliptic integrals === In the following some ''Elliptic Integral Singular Values''<ref>{{cite web|access-date=2023-04-07|title=Elliptic Integral Singular Value |url=https://archive.lib.msu.edu/crcmath/math/math/e/e103.htm|website=msu.edu}}<!-- auto-translated by Module:CS1 translator --></ref> are derived: {| class="wikitable" | The ensuing function has the following lemniscatically elliptic antiderivative: :<math>\frac{1}{\sqrt{x^4 + 1}} = \frac{\mathrm{d}}{\mathrm{d}x}\,\frac{1}{2} F\biggl[2\arctan(x); \frac{1}{2}\sqrt{2}\,\biggr]</math> For the value <math>n = 2</math> this identity appears: :<math>\frac{1}{4\sqrt{2}}\csc\bigl(\frac{\pi}{4}\bigr)\beta\bigl(\frac{1}{4}\bigr) = \int_{0}^{\infty} \frac{1}{\sqrt{x^4 + 1}} \,\mathrm{d}x = \biggl\{{\color{blue}\frac{1}{2} F\biggl[2\arctan(x); \frac{1}{2}\sqrt{2}\,\biggr]}\biggr\}_{x = 0}^{x = \infty} =</math> :<math>= \frac{1}{2} F\bigl(\pi; \frac{1}{2}\sqrt{2}\bigr) = K\bigl(\frac{1}{2}\sqrt{2}\bigr) </math> This result follows from that equation chain: :<math>{\color{ForestGreen}K\bigl(\frac{1}{2}\sqrt{2}\bigr) = \frac{1}{4}\beta\bigl(\frac{1}{ 4}\bigr)}</math> |} {| class="wikitable" | The following function has the following equianharmonic elliptic antiderivative: :<math>\frac{1}{\sqrt{x^6 + 1}} = \frac{\mathrm{d}}{\mathrm{d}x}\,\frac{1}{6}\sqrt [4]{27}F\biggl[2\arctan\biggl(\frac{\sqrt[4]{3}\,x}{\sqrt{x^2 + 1}}\biggr);\frac{1 }{4}(\sqrt{6} + \sqrt{2})\biggr]</math> For the value <math>n = 4</math> that identity appears: :<math>\frac{1}{6\sqrt[3]{2}}\csc\bigl(\frac{\pi}{6}\bigr)\beta\bigl(\frac{1}{3} \bigr) = \int_{0}^{\infty} \frac{1}{\sqrt{x^6 + 1}} \,\mathrm{d}x = \biggl\{{\color{blue}\frac{1}{6}\sqrt[4]{27}F\biggl[2\arctan\biggl(\frac{\sqrt[4]{3}\,x}{\sqrt{x^2 + 1}}\biggr);\frac{1}{4}(\sqrt{6} + \sqrt{2})\biggr]}\biggr\}_{x = 0}^{x = \infty} =</math> :<math>= \frac{1}{6}\sqrt[4]{27} F\bigl[2\arctan(\sqrt[4]{3});\frac{1}{4}(\sqrt {6} + \sqrt{2})\bigr] = \frac{2}{9}\sqrt[4]{27} K\bigl[\frac{1}{4}(\sqrt{6} + \sqrt{2})\bigr] = \frac{2}{3}\sqrt[4]{3} K\bigl[\frac{1}{4}(\sqrt{6} - \sqrt{2}) \bigr] </math> This result follows from that equation chain: :<math>{\color{ForestGreen}K\bigl[\frac{1}{4}(\sqrt{6} - \sqrt{2})\bigr] = \frac{1}{2\sqrt[3 ]{2}\sqrt[4]{3}}\beta\bigl(\frac{1}{3}\bigr)}</math> |} {| class="wikitable" | And the following function has the following elliptic antiderivative: :<math>\frac{1}{\sqrt{x^8 + 1}} =</math> :<math>= \frac{\mathrm{d}}{\mathrm{d}x}\,\frac{1}{4}\sec \bigl(\frac{\pi}{8}\bigr)F\biggl\{2\arctan\biggl[\frac{2\cos(\pi/8)\,x}{\sqrt{x^4 + \sqrt{2}\,x^2 + 1} - x^2 + 1}\biggr];2\sqrt[4]{2}\sin\bigl(\frac{\pi}{8}\bigr) \biggr\} + \frac{1}{4}\sec\bigl(\frac{\pi}{8}\bigr)F\biggl\{\arcsin\biggl[\frac{2\cos(\pi/ 8)\,x}{x^2 + 1}\biggr];\tan\bigl(\frac{\pi}{8}\bigr)\biggr\}</math> For the value <math>n = 6</math> the following identity appears: :<math>\frac{1}{8\sqrt[4]{2}}\csc\bigl(\frac{\pi}{8}\bigr)\beta\bigl(\frac{3}{8} \bigr) = \int_{0}^{\infty} \frac{1}{\sqrt{x^8 + 1}} \,\mathrm{d}x =</math> :<math>= \biggl\langle{\color{blue}\frac{1}{4}\sec\bigl(\frac{\pi}{8}\bigr)F\biggl\{2\arctan\biggl[\frac{2\cos(\pi/8)\,x}{\sqrt{x^4 + \sqrt{2}\,x^2 + 1} - x^2 + 1}\biggr];2\sqrt[4]{ 2}\sin\bigl(\frac{\pi}{8}\bigr)\biggr\} + \frac{1}{4}\sec\bigl(\frac{\pi}{8}\bigr)F \biggl\{\arcsin\biggl[\frac{2\cos(\pi/8)\,x}{x^2 + 1}\biggr];\tan\bigl(\frac{\pi}{8} \bigr)\biggr\}}\biggr\rangle_{x = 0}^{x = \infty} =</math> :<math>= \frac{1}{4}\sec\bigl(\frac{\pi}{8}\bigr)F\bigl[\pi;2\sqrt[4]{2}\sin\bigl (\frac{\pi}{8}\bigr)\bigr] = \frac{1}{2}\sec\bigl(\frac{\pi}{8}\bigr)K(\sqrt{2\sqrt {2} - 2}\bigr) = 2\sin\bigl(\frac{\pi}{8}\bigr)K(\sqrt{2} - 1)</math> This result follows from that equation chain: :<math>{\color{ForestGreen}K(\sqrt{2} - 1) = \frac{1}{8}\sqrt[4]{2}\,(\sqrt{2} + 1)\, \beta\bigl(\frac{3}{8}\bigr)}</math> |} === Combination of the integral identities with the nome === The elliptic nome function has these important values: :<math>q(\tfrac{1}{2}\sqrt{2}) = \exp(-\pi)</math> :<math>q[\tfrac{1}{4}(\sqrt{6} - \sqrt{2})] = \exp(-\sqrt{3}\,\pi)</math> :<math>q(\sqrt{2} - 1) = \exp(-\sqrt{2}\,\pi)</math> For the proof of the correctness of these nome values, see the article [[Nome (mathematics)]]! On the basis of these integral identities and the above-mentioned '''Definition and identities to the theta functions''' in the same section of this article, exemplary theta zero values shall be determined now: :{| class="wikitable" |<math>\theta_{3}[q(k)] = \sqrt{2\pi^{-1} K(k)}</math> |} :<math>\theta_{3}[\exp(-\pi)] = \theta_{3}[q(\tfrac{1}{2}\sqrt{2})] = \sqrt{2\pi^ {-1}K(\tfrac{1}{2}\sqrt{2})} = 2^{-1/2}\pi^{-1/2}\beta(\tfrac{1}{4} )^{1/2} = 2^{-1/4}\sqrt[4]{\pi}\,{\Gamma\bigl(\tfrac{3}{4}\bigr)}^{-1} </math> :<math>\theta _{3}[\exp(-\sqrt{3}\,\pi )] = \theta _{3}\bigl\{q\bigl[\tfrac{1}{4}(\sqrt {6} - \sqrt{2})\bigr]\bigr\} = \sqrt{2\pi^{-1}K\bigl[\tfrac{1}{4}(\sqrt{6} - \sqrt {2})\bigr]} = 2^{-1/6}3^{-1/8}\pi^{-1/2}\beta(\tfrac{1}{3})^{1/ 2}</math> :<math>\theta _{3}[\exp(-\sqrt{2}\,\pi )] = \theta _{3}[q(\sqrt{2} - 1)] = \sqrt{2\pi ^{-1}K(\sqrt{2} - 1)} = 2^{-1/8}\cos(\tfrac{1}{8}\pi)\,\pi^{-1/2} \beta(\tfrac{3}{8})^{1/2}</math> :{| class="wikitable" |<math>\theta_{4}[q(k)] = \sqrt[4]{1 - k^2}\,\sqrt{2\pi^{-1} K(k)}</math> |} :<math>\theta_{4}[\exp(-\sqrt{2}\,\pi)] = \theta_{4}[q(\sqrt{2} - 1)] = \sqrt[4]{ 2\sqrt{2} - 2}\,\sqrt{2\pi^{-1}K(\sqrt{2} - 1)} = 2^{-1/4}\cos(\tfrac{1} {8}\pi)^{1/2}\,\pi^{-1/2}\beta(\tfrac{3}{8})^{1/2}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)