Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Distribution (mathematics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Tensor products of distributions{{anchor|Tensor product of distributions}}=== Let <math>U \subseteq \R^m</math> and <math>V \subseteq \R^n</math> be open sets. Assume all vector spaces to be over the field <math>\mathbb{F},</math> where <math>\mathbb{F}=\R</math> or <math>\Complex.</math> For <math>f \in \mathcal{D}(U \times V)</math> define for every <math>u \in U</math> and every <math>v \in V</math> the following functions: <math display=block>\begin{alignat}{9} f_u : \,& V && \to \,&& \mathbb{F} && \quad \text{ and } \quad && f^v : \,&& U && \to \,&& \mathbb{F} \\ & y && \mapsto\,&& f(u, y) && && && x && \mapsto\,&& f(x, v) \\ \end{alignat}</math> Given <math>S \in \mathcal{D}^{\prime}(U)</math> and <math>T \in \mathcal{D}^{\prime}(V),</math> define the following functions: <math display=block>\begin{alignat}{9} \langle S, f^{\bullet}\rangle : \,& V && \to \,&& \mathbb{F} && \quad \text{ and } \quad && \langle T, f_{\bullet}\rangle : \,&& U && \to \,&& \mathbb{F} \\ & v && \mapsto\,&& \langle S, f^v \rangle && && && u && \mapsto\,&& \langle T, f_u \rangle \\ \end{alignat}</math> where <math>\langle T, f_{\bullet}\rangle \in \mathcal{D}(U)</math> and <math>\langle S, f^{\bullet}\rangle \in \mathcal{D}(V).</math> These definitions associate every <math>S \in \mathcal{D}'(U)</math> and <math>T \in \mathcal{D}'(V)</math> with the (respective) continuous linear map: <math display=block>\begin{alignat}{9} \,&& \mathcal{D}(U \times V) & \to \,&& \mathcal{D}(V) && \quad \text{ and } \quad && \,& \mathcal{D}(U \times V) && \to \,&& \mathcal{D}(U) \\ && f \ & \mapsto\,&& \langle S, f^{\bullet} \rangle && && & f \ && \mapsto\,&& \langle T, f_{\bullet} \rangle \\ \end{alignat}</math> Moreover, if either <math>S</math> (resp. <math>T</math>) has compact support then it also induces a continuous linear map of <math>C^\infty(U \times V) \to C^\infty(V)</math> (resp. {{nowrap|<math>C^\infty(U \times V) \to C^\infty(U)</math>).}}{{sfn|Trèves|2006|pp=416-419}} {{Math theorem|name={{visible anchor|Fubini's theorem for distributions|text=[[Fubini's theorem]] for distributions}}{{sfn|Trèves|2006|pp=416-419}}|math_statement= Let <math>S \in \mathcal{D}'(U)</math> and <math>T \in \mathcal{D}'(V).</math> If <math>f \in \mathcal{D}(U \times V)</math> then <math display=block>\langle S, \langle T, f_{\bullet} \rangle \rangle = \langle T, \langle S, f^{\bullet} \rangle \rangle.</math> }} {{em|The [[Tensor product|'''{{visible anchor|tensor product}}''']] of <math>S \in \mathcal{D}'(U)</math> and <math>T \in \mathcal{D}'(V),</math>}} denoted by <math>S \otimes T</math> or <math>T \otimes S,</math> is the distribution in <math>U \times V</math> defined by:{{sfn|Trèves|2006|pp=416-419}} <math display=block>(S \otimes T)(f) := \langle S, \langle T, f_{\bullet} \rangle \rangle = \langle T, \langle S, f^{\bullet}\rangle \rangle.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)