Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Four-vector
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Other formulations== ===Four-vectors in the algebra of physical space=== A four-vector ''A'' can also be defined in using the [[Pauli matrices]] as a [[basis (linear algebra)|basis]], again in various equivalent notations:<ref>{{cite book |pages= 1142β1143|author1=J.A. Wheeler |author2=C. Misner |author3=K.S. Thorne | title=[[Gravitation (book)|Gravitation]]| publisher=W.H. Freeman & Co| year=1973 | isbn=0-7167-0344-0}}</ref> <math display="block"> \begin{align} \mathbf{A} & = \left(A^0, \, A^1, \, A^2, \, A^3\right) \\ & = A^0\boldsymbol{\sigma}_0 + A^1 \boldsymbol{\sigma}_1 + A^2 \boldsymbol{\sigma}_2 + A^3 \boldsymbol{\sigma}_3 \\ & = A^0\boldsymbol{\sigma}_0 + A^i \boldsymbol{\sigma}_i \\ & = A^\alpha\boldsymbol{\sigma}_\alpha\\ \end{align}</math> or explicitly: <math display="block">\begin{align} \mathbf{A} & = A^0\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + A^1\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + A^2\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + A^3\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & = \begin{pmatrix} A^0 + A^3 & A^1 - i A^2 \\ A^1 + i A^2 & A^0 - A^3 \end{pmatrix} \end{align}</math> and in this formulation, the four-vector is represented as a [[Hermitian matrix]] (the [[matrix transpose]] and [[complex conjugate]] of the matrix leaves it unchanged), rather than a real-valued column or row vector. The [[determinant]] of the matrix is the modulus of the four-vector, so the determinant is an invariant: <math display="block"> \begin{align} |\mathbf{A}| & = \begin{vmatrix} A^0 + A^3 & A^1 - i A^2 \\ A^1 + i A^2 & A^0 - A^3 \end{vmatrix} \\[1ex] & = \left(A^0 + A^3\right)\left(A^0 - A^3\right) - \left(A^1 -i A^2\right)\left(A^1 + i A^2\right) \\[1ex] & = \left(A^0\right)^2 - \left(A^1\right)^2 - \left(A^2\right)^2 - \left(A^3\right)^2 \end{align}</math> This idea of using the Pauli matrices as [[basis vector]]s is employed in the [[algebra of physical space]], an example of a [[Clifford algebra]]. ===Four-vectors in spacetime algebra=== In [[spacetime algebra]], another example of Clifford algebra, the [[gamma matrices]] can also form a [[basis (linear algebra)|basis]]. (They are also called the Dirac matrices, owing to their appearance in the [[Dirac equation]]). There is more than one way to express the gamma matrices, detailed in that main article. The [[Feynman slash notation]] is a shorthand for a four-vector '''A''' contracted with the gamma matrices: <math display="block">\mathbf{A}\!\!\!\!/ = A_\alpha \gamma^\alpha = A_0 \gamma^0 + A_1 \gamma^1 + A_2 \gamma^2 + A_3 \gamma^3 </math> The four-momentum contracted with the gamma matrices is an important case in [[relativistic quantum mechanics]] and [[relativistic quantum field theory]]. In the Dirac equation and other [[relativistic wave equation]]s, terms of the form: <math display="block">\begin{align} \mathbf{P}\!\!\!\!/ = P_\alpha \gamma^\alpha &= P_0 \gamma^0 + P_1 \gamma^1 + P_2 \gamma^2 + P_3 \gamma^3 \\[4pt] &= \dfrac{E}{c} \gamma^0 - p_x \gamma^1 - p_y \gamma^2 - p_z \gamma^3 \\ \end{align} </math> appear, in which the energy {{mvar|E}} and momentum components {{math|(''p<sub>x</sub>'', ''p<sub>y</sub>'', ''p<sub>z</sub>'')}} are replaced by their respective [[operator (physics)|operator]]s.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)