Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Further reading == {{refbegin|30em}} * {{cite book|editor1-first=Milton |editor1-last=Abramowitz |editor2-first=Irene A. |editor2-last=Stegun |title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables |location=New York |publisher=Dover |date=1972 |chapter-url=http://www.math.sfu.ca/~cbm/aands/page_253.htm |chapter=Chapter 6|title-link=Abramowitz and Stegun }} * {{cite book|first1=G. E. |last1=Andrews |first2=R. |last2=Askey |author-link=Richard Askey |first3=R. |last3=Roy |title=Special Functions |publisher=Cambridge University Press |location=New York |date=1999 |isbn=978-0-521-78988-2 |chapter=Chapter 1 (Gamma and Beta functions)}} * {{cite book|last=Artin |first=Emil |author-link=Emil Artin |contribution=The Gamma Function |editor-last=Rosen |editor-first=Michael |title=Exposition by Emil Artin: a selection |series=History of Mathematics |volume=30 |location=Providence, RI |publisher=American Mathematical Society |date=2006}} * {{dlmf|authorlink=Richard Askey|first=R.|last= Askey|first2= R.|last2= Roy |id=5 |ref=none }} * {{cite journal |last = Birkhoff |first = George D. |author-link = George David Birkhoff |title = Note on the gamma function |journal = Bull. Amer. Math. Soc. |year = 1913 |volume = 20 |number = 1 |pages = 1–10 |mr = 1559418 |doi = 10.1090/s0002-9904-1913-02429-7 |doi-access = free }} * {{cite book|first=P. E. |last=Böhmer |title=Differenzengleichungen und bestimmte Integrale |trans-title=Differential Equations and Definite Integrals |publisher=Köhler Verlag |location=Leipzig |date=1939}} * {{cite journal|first=Philip J. |last=Davis |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |journal=[[American Mathematical Monthly]] |volume=66 |issue=10 |pages=849–869 |date=1959 |doi=10.2307/2309786|jstor=2309786 }} * {{cite journal |last1=Post |first1=Emil |title=The Generalized Gamma Functions |journal=Annals of Mathematics |series=Second Series |date=1919 |volume=20 |issue=3 |pages=202–217 |doi=10.2307/1967871 |jstor=1967871 |url=https://www.jstor.org/stable/1967871 |access-date=5 March 2021}} * {{cite book|last1 = Press |first1 = W. H. |last2 = Teukolsky |first2 = S. A. |last3 = Vetterling |first3 = W. T. |last4 = Flannery |first4 = B. P. |year = 2007 |title = Numerical Recipes: The Art of Scientific Computing |edition = 3rd |publisher = Cambridge University Press |location = New York |isbn = 978-0-521-88068-8 |chapter = Section 6.1. Gamma Function |chapter-url = http://apps.nrbook.com/empanel/index.html?pg=256 }} * {{cite book|first=O. R. |last=Rocktäschel |title=Methoden zur Berechnung der Gammafunktion für komplexes Argument |trans-title=Methods for Calculating the Gamma Function for Complex Arguments |publisher=[[Technische Universität Dresden|Technical University of Dresden]] |location=Dresden |date=1922}} * {{cite book|first=Nico M. |last=Temme |title=Special Functions: An Introduction to the Classical Functions of Mathematical Physics |publisher=John Wiley & Sons |location=New York |isbn=978-0-471-11313-3 |date=1996}} * {{cite book|author-link1=E. T. Whittaker |first1=E. T. |last1=Whittaker |first2=G. N. |last2=Watson|author-link2=G. N. Watson |title=[[A Course of Modern Analysis]] |publisher=Cambridge University Press |date=1927 |isbn=978-0-521-58807-2}} {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)