Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wireless sensor network
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===In-network processing=== To reduce communication costs some algorithms remove or reduce nodes' redundant sensor information and avoid forwarding data that is of no use. This technique has been used, for instance, for distributed anomaly detection<ref>{{Cite journal|last1=Bosman|first1=H. H. W. J.|last2=Iacca|first2=G|last3=Tejada|first3=A.|last4=Wörtche|first4=H. J.|last5=Liotta|first5=A.|date=2015-12-01|title=Ensembles of incremental learners to detect anomalies in ad hoc sensor networks|journal=Ad Hoc Networks|series=Special Issue on Big Data Inspired Data Sensing, Processing and Networking Technologies|volume=35|pages=14–36|doi=10.1016/j.adhoc.2015.07.013|issn=1570-8705|hdl=11572/196409|hdl-access=free}}</ref><ref>{{Cite book|last1=Bosman|first1=H. H. W. J.|last2=Liotta|first2=A.|last3=Iacca|first3=G.|last4=Wörtche|first4=H. J.|title=2013 IEEE International Conference on Systems, Man, and Cybernetics |chapter=Anomaly Detection in Sensor Systems Using Lightweight Machine Learning |date=October 2013|pages=7–13|doi=10.1109/SMC.2013.9|isbn=978-1-4799-0652-9|s2cid=6434158}}</ref><ref>{{Cite book|last1=Bosman|first1=H. H. W. J.|last2=Liotta|first2=A.|last3=Iacca|first3=G.|last4=Wörtche|first4=H. J.|title=2013 IEEE 13th International Conference on Data Mining Workshops |chapter=Online Extreme Learning on Fixed-Point Sensor Networks |date=December 2013|pages=319–326|doi=10.1109/ICDMW.2013.74|isbn=978-1-4799-3142-2|s2cid=6460187}}</ref><ref>{{Cite book|last1=Bosman|first1=H. H. W. J.|last2=Iacca|first2=G.|last3=Wörtche|first3=H. J.|last4=Liotta|first4=A.|title=2014 IEEE International Conference on Data Mining Workshop |chapter=Online Fusion of Incremental Learning for Wireless Sensor Networks |date=December 2014|pages=525–532|doi=10.1109/ICDMW.2014.79|isbn=978-1-4799-4274-9|hdl=10545/622629|s2cid=14029568|hdl-access=free}}</ref> or distributed optimization.<ref>{{Cite journal|last=Iacca|first=G.|title=Distributed optimization in wireless sensor networks: an island-model framework|journal=Soft Computing|language=en|volume=17|issue=12|pages=2257–2277|doi=10.1007/s00500-013-1091-x|issn=1433-7479|arxiv=1810.02679|year=2018|bibcode=2018arXiv181002679I|s2cid=33273544}}</ref> As nodes can inspect the data they forward, they can measure averages or directionality for example of readings from other nodes. For example, in sensing and monitoring applications, it is generally the case that neighboring sensor nodes monitoring an environmental feature typically register similar values. This kind of data redundancy due to the spatial correlation between sensor observations inspires techniques for in-network data aggregation and mining. Aggregation reduces the amount of network traffic which helps to reduce energy consumption on sensor nodes.<ref>{{Cite journal|last1=Bosman|first1=H. H. W. J.|last2=Iacca|first2=G.|last3=Tejada|first3=A.|last4=Wörtche|first4=H. J.|last5=Liotta|first5=A.|date=2017-01-01|title=Spatial anomaly detection in sensor networks using neighborhood information|journal=Information Fusion|volume=33|pages=41–56|doi=10.1016/j.inffus.2016.04.007|issn=1566-2535|doi-access=free|hdl=11572/196405|hdl-access=free}}</ref><ref name="refESPDA">{{Cite book|last=Cam|first=H|author2=Ozdemir, S Nair, P Muthuavinashiappan, D|title=Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)|chapter=ESPDA: Energy-efficient and Secure Pattern-based Data Aggregation for wireless sensor networks|date=October 2003|volume=2|pages=732–736|doi=10.1109/icsens.2003.1279038|isbn=978-0-7803-8133-9|citeseerx=10.1.1.1.6961|s2cid=15686293}}</ref> Recently, it has been found that network gateways also play an important role in improving energy efficiency of sensor nodes by scheduling more resources for the nodes with more critical energy efficiency need and advanced energy efficient scheduling algorithms need to be implemented at network gateways for the improvement of the overall network energy efficiency.<ref name=Zander/><ref>{{cite journal|last=Rowayda|first=A. Sadek|title= Hybrid energy aware clustered protocol for IoT heterogeneous network |journal= Future Computing and Informatics Journal|volume=3|issue=2|pages=166–177|date=May 2018 |doi=10.1016/j.fcij.2018.02.003|doi-access=free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)