Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Allan variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Measurement length and effective use of samples=== Studying the effect on the [[#Confidence interval|confidence intervals]] that the length ''N'' of the sample series have and the effect of the variable ''Ο'' parameter ''n,'' the confidence intervals may become very large since the [[#Effective degree of freedom|effective degree of freedom]] may become small for some combination of ''N'' and ''n'' for the dominant noise form (for that ''Ο''). The effect may be that the estimated value may be much smaller or much greater than the real value, which may lead to false conclusions of the result. It is recommended that: * The confidence interval be plotted along with the data, such that the reader of the plot knows of the statistical uncertainty of the values. * The length of the sample sequence (i.e. the number of samples ''N'') must be kept as high as possible to ensure that confidence interval is small over the ''Ο'' range of interest. * Estimators providing better degrees of freedom values be used in replacement of the Allan variance estimators or as complementing them where they outperform the Allan variance estimators. Among those the [[total variance]] and [[Theo variance]] estimators should be considered. * The ''Ο'' range as swept by the ''Ο''<sub>0</sub> multiplier ''n'' is limited in the upper end relative ''N'', such that the reader of the plot may not be confused by highly unstable estimator values.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)