Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Miscellaneous === Let ''m'' and ''n'' be distinct, odd, and positive. Then the Jacobi symbol satisfies the law of [[quadratic reciprocity]]: <math display="block"> \left(\frac{m}{n}\right) \left(\frac{n}{m}\right) = (-1)^{(m-1)(n-1)/4}.</math> Let ''D''(''n'') be the arithmetic derivative. Then the logarithmic derivative <math display="block">\frac{D(n)}{n} = \sum_{\stackrel{p\mid n}{p\text{ prime}}} \frac {v_{p}(n)} {p}.</math> See ''[[Arithmetic derivative]]'' for details. Let ''λ''(''n'') be Liouville's function. Then : <math>|\lambda(n)|\mu(n) =\lambda(n)|\mu(n)| = \mu(n),</math> and : <math>\lambda(n)\mu(n) = |\mu(n)| =\mu^2(n).</math> Let ''λ''(''n'') be Carmichael's function. Then : <math>\lambda(n)\mid \phi(n).</math> Further, : <math>\lambda(n)= \phi(n) \text{ if and only if }n=\begin{cases} 1,2, 4;\\ 3,5,7,9,11, \ldots \text{ (that is, } p^k \text{, where }p\text{ is an odd prime)};\\ 6,10,14,18,\ldots \text{ (that is, } 2p^k\text{, where }p\text{ is an odd prime)}. \end{cases}</math> See [[Multiplicative group of integers modulo n]] and [[Primitive root modulo n]]. : <math>2^{\omega(n)} \le d(n) \le 2^{\Omega(n)}.</math> <ref>Hardy ''Ramanujan'', eq. 3.10.3</ref><ref>Hardy & Wright, § 22.13</ref> : <math>\frac{6}{\pi^2}<\frac{\phi(n)\sigma(n)}{n^2} < 1.</math> <ref>Hardy & Wright, Thm. 329</ref> : <math>\begin{align} c_q(n) &=\frac{\mu\left(\frac{q}{\gcd(q, n)}\right)}{\phi\left(\frac{q}{\gcd(q, n)}\right)}\phi(q)\\ &=\sum_{\delta\mid \gcd(q,n)}\mu\left(\frac{q}{\delta}\right)\delta. \end{align}</math> <ref>Hardy & Wright, Thms. 271, 272</ref> Note that <math>\phi(q) = \sum_{\delta\mid q}\mu\left(\frac{q}{\delta}\right)\delta.</math> <ref>Hardy & Wright, eq. 16.3.1</ref> : <math>c_q(1) = \mu(q).</math> : <math>c_q(q) = \phi(q).</math> : <math>\sum_{\delta\mid n}d^{3}(\delta) = \left(\sum_{\delta\mid n}d(\delta)\right)^2.</math> <ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (C); ''Papers'' p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.</ref> Compare this with {{math|1=1<sup>3</sup> + 2<sup>3</sup> + 3<sup>3</sup> + ... + ''n''<sup>3</sup> = (1 + 2 + 3 + ... + ''n'')<sup>2</sup>}} : <math>d(uv) = \sum_{\delta\mid \gcd(u,v)}\mu(\delta)d\left(\frac{u}{\delta}\right)d\left(\frac{v}{\delta}\right). </math> <ref>Ramanujan, ''Some Formulæ in the Analytic Theory of Numbers'', eq. (F); ''Papers'' p. 134</ref> : <math>\sigma_k(u)\sigma_k(v) = \sum_{\delta\mid \gcd(u,v)}\delta^k\sigma_k\left(\frac{uv}{\delta^2}\right). </math> <ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 4</ref> : <math>\tau(u)\tau(v) = \sum_{\delta\mid \gcd(u,v)}\delta^{11}\tau\left(\frac{uv}{\delta^2}\right), </math> where ''τ''(''n'') is Ramanujan's function. <ref>Apostol, ''Modular Functions ...'', ch. 6 eq. 3</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)