Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brown dwarf
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Planets around brown dwarfs == [[File:Artist’s impression of the disc of dust and gas around a brown dwarf.jpg|thumb|Artist's impression of a disc of dust and gas around a brown dwarf<ref>{{cite press release |first1=Luca |last1=Ricci |first2=Leonardo |last2=Testi |first3=Douglas |last3=Pierce-Price |first4=John |last4=Stoke |title=Even Brown Dwarfs May Grow Rocky Planets |url=http://www.eso.org/public/news/eso1248/ |access-date=3 December 2012 |publisher=European Southern Observatory |archive-url=https://web.archive.org/web/20121203042337/http://www.eso.org/public/news/eso1248/ |archive-date=3 December 2012 |url-status=dead }}</ref>]] According to the IAU working definition (from August 2018) an exoplanet can orbit a brown dwarf. It requires a mass below 13 {{Jupiter mass}} and a mass ratio of ''M''/''M''<sub>central</sub><2/(25+√{621}), or roughly 1/25. This means that an object with a mass up to 3.2 {{Jupiter mass}} around a brown dwarf with a mass of 80 {{Jupiter mass}} is considered a planet. It also means that an object with a mass up to 0.52 {{Jupiter mass}} around a brown dwarf with a mass of 13 {{Jupiter mass}} is considered a planet.<ref>{{cite journal |last1=Lecavelier des Etangs |first1=A. |last2=Lissauer |first2=Jack J. |date=2022-06-01 |title=The IAU working definition of an exoplanet |url=https://ui.adsabs.harvard.edu/abs/2022NewAR..9401641L |journal=New Astronomy Reviews |volume=94 |pages=101641 |doi=10.1016/j.newar.2022.101641 |arxiv=2203.09520 |bibcode=2022NewAR..9401641L |s2cid=247065421 |issn=1387-6473}}</ref> The [[super-Jupiter]] planetary-mass objects [[2M1207b]], [[2MASS J044144]] and Oph 98 B that are orbiting brown dwarfs at large orbital distances may have formed by [[cloud collapse]] rather than accretion and so may be [[sub-brown dwarf]]s rather than [[planet]]s, which is inferred from relatively large masses and large orbits. The first discovery of a low-mass companion orbiting a brown dwarf ([[ChaHα8]]) at a small orbital distance using the [[Doppler spectroscopy|radial velocity technique]] paved the way for the detection of planets around brown dwarfs on orbits of a few AU or smaller.<ref>{{cite journal |last1=Joergens |first1=Viki |last2=Müller |first2=André |title=16–20 MJup Radial Velocity Companion Orbiting the Brown Dwarf Candidate Cha Hα 8 |journal=The Astrophysical Journal |year=2007 |volume=666 |issue=2 |pages=L113–L116 |doi=10.1086/521825 |bibcode=2007ApJ...666L.113J |arxiv=0707.3744|s2cid=119140521 }}</ref><ref>{{cite journal |last1=Joergens |first1=Viki |last2=Müller |first2=André |last3=Reffert |first3=Sabine |title=Improved radial velocity orbit of the young binary brown dwarf candidate Cha Hα 8 |journal=Astronomy and Astrophysics |date=2010 |volume=521 |issue=A24 |pages=A24 |doi=10.1051/0004-6361/201014853 |bibcode=2010A&A...521A..24J |arxiv=1006.2383|s2cid=54989533 }}</ref> However, with a mass ratio between the companion and primary in [[ChaHα8]] of about 0.3, this system rather resembles a binary star. Then, in 2008, the first planetary-mass companion in a relatively small orbit ([[MOA-2007-BLG-192Lb]]) was discovered orbiting a brown dwarf.<ref name="bennett2008">{{cite journal |last1=Bennet |first1=David P. |first2=Ian A. |last2=Bond |first3=Andrzej |last3=Udalski |first4=Takahiro |last4=Sumi |first5=Fumio |last5=Abe |first6=Akihiko |last6=Fukui |first7=Kei |last7=Furusawa |first8=John B. |last8=Hearnshaw |first9=Sarah |last9=Holderness |first10=Yoshitaka |last10=Itow |first11=Koki |last11=Kamiya |first12=Aarno V. |last12=Korpela |first13=Pamela M. |last13=Kilmartin |first14=Wei |last14=Lin |first15=Cho Hong |last15=Ling |first16=Kimiaki |last16=Masuda |first17=Yutaka |last17=Matsubara |first18=Noriyuki |last18=Miyake |first19=Yasushi |last19=Muraki |first20=Maiko |last20=Nagaya |first21=Teppei |last21=Okumura |first22=Kouji |last22=Ohnishi |first23=Yvette C. |last23=Perrott |first24=Nicholas J. |last24=Rattenbury |first25=Takashi |last25=Sako |first26=Toshiharu |last26=Saito |first27=S. |last27=Sato |first28=Ljiljana |last28=Skuljan |first29=Denis J. |last29=Sullivan |first30=Winston L. |last30=Sweatman |first31=Paul J. |last31=Tristram |first32=Philip C. M. |last32=Yock |first33=Marcin |last33=Kubiak |first34=Michał K. |last34=Szymański |first35=Grzegorz |last35=Pietrzyński |first36=Igor |last36=Soszyński |first37=O. |last37=Szewczyk |first38=Łukasz |last38=Wyrzykowski |first39=Krzysztof |last39=Ulaczyk |first40=Virginie |last40=Batista |first41=Jean-Philippe |last41=Beaulieu |first42=Stéphane |last42=Brillant |first43=Arnaud |last43=Cassan |first44=Pascal |last44=Fouqué |first45=Pierre |last45=Kervella |first46=Daniel |last46=Kubas |first47=Jean-Baptiste |last47=Marquette |arxiv=0806.0025 |title=A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 |journal=The Astrophysical Journal |date=30 May 2008 |volume=684 |issue=1 |pages=663–683 |doi=10.1086/589940 |bibcode=2008ApJ...684..663B |s2cid=14467194 }}</ref> <!-- Then, in 2013, the first planetary-mass companion (OGLE-2012-BLG-0358L b) in a relatively small orbit was discovered orbiting a brown dwarf.<ref>{{cite magazine |url=http://www.technologyreview.com/view/517556/first-planet-discovered-orbiting-a-brown-dwarf/ |title=First Planet Discovered Orbiting a Brown Dwarf |magazine=MIT Technology Review |date=29 July 2013 |access-date=29 July 2013}}</ref> In 2015, the first terrestrial-mass planet orbiting a brown dwarf was found, OGLE-2013-BLG-0723LBb.<ref>{{cite journal |arxiv=1507.02388 |last1=Burrows |first1=Adam |title=A Venus-Mass Planet Orbiting a Brown Dwarf: Missing Link between Planets and Moons |journal=The Astrophysical Journal |volume=812 |issue=1 |pages=47 |last2=Hubbard |first2=William B. |last3=Lunine |first3=Jonathan I. |last4=Liebert |first4=James |last5=Kozłowski |first5=S. |last6=Skowron |first6=J. |last7=Poleski |first7=R. |last8=Soszyński |first8=I. |last9=Pietrukowicz |first9=P. |last10=Mróz |first10=P. |last11=Szymański |first11=M. K. |last12=Wyrzykowski |first12=Ł. |last13=Ulaczyk |first13=K. |last14=Pietrzyński |first14=G. |last15=Shvartzvald |first15=Y. |last16=Maoz |first16=D. |last17=Kaspi |first17=S. |last18=Gaudi |first18=B. S. |last19=Hwang |first19=K.-H. |last20=Choi |first20 = J.-Y. |last21=Shin |first21=I.-G. |last22=Park |first22=H. |last23=Bozza |first23=V. |year=2015 |doi=10.1088/0004-637X/812/1/47 |bibcode=2015ApJ...812...47U }}</ref> --> Planets around brown dwarfs are likely to be [[carbon planet]]s depleted of water.<ref>{{cite journal |arxiv=1311.1228 |last1=Burrows |first1=Adam |title=The Atomic and Molecular Content of Disks Around Very Low-mass Stars and Brown Dwarfs |journal=The Astrophysical Journal |volume=779 |issue=2 |pages=178 |last2=Hubbard |first2=William B. |last3=Lunine |first3=Jonathan I. |last4=Liebert |first4=James |year=2013 |doi=10.1088/0004-637X/779/2/178 |bibcode=2013ApJ...779..178P |s2cid=119001471 }}</ref> A 2017 study, based upon observations with [[Spitzer Space Telescope|Spitzer]] estimates that 175 brown dwarfs need to be monitored in order to guarantee (95%) at least one detection of a below earth-sized planet via the transiting method.<ref>{{cite journal |last1=He |first1=Matthias Y. |last2=Triaud |first2=Amaury H. M. J. |last3=Gillon |first3=Michaël |date=January 2017 |title=First limits on the occurrence rate of short-period planets orbiting brown dwarfs |journal=Monthly Notices of the Royal Astronomical Society |volume=464 |issue=3 |pages=2687–2697 |arxiv=1609.05053 |bibcode=2017MNRAS.464.2687H |doi=10.1093/mnras/stw2391 |doi-access=free |s2cid=53692008 }}</ref> JWST could potentially detect smaller planets. The orbits of planets and moons in the [[Solar System|solar system]] often align with the orientation of the host star/planet they orbit. Assuming the orbit of a planet is aligned with the [[Rotation|rotational axis]] of a brown dwarf or [[Rogue planet|planetary-mass object]], the geometric transit probability of an object similar to [[Io (moon)|Io]] can be calculated with the formula cos(79.5°)/cos([[Orbital inclination|inclination]]).<ref name=":122">{{cite journal |last1=Limbach |first1=Mary Anne |last2=Vos |first2=Johanna M. |last3=Winn |first3=Joshua N. |last4=Heller |first4=René |last5=Mason |first5=Jeffrey C. |last6=Schneider |first6=Adam C. |last7=Dai |first7=Fei |date=2021-09-01 |title=On the Detection of Exomoons Transiting Isolated Planetary-mass Objects |journal=The Astrophysical Journal |volume=918 |issue=2 |pages=L25 |arxiv=2108.08323 |bibcode=2021ApJ...918L..25L |doi=10.3847/2041-8213/ac1e2d |issn=0004-637X |doi-access=free}}</ref> The inclination was estimated for several brown dwarfs and planetary-mass objects. [[SIMP J013656.5+093347|SIMP 0136]] for example has an estimated inclination of 80°±12.<ref>{{cite journal |last1=Vos |first1=Johanna M. |last2=Allers |first2=Katelyn N. |last3=Biller |first3=Beth A. |date=2017-06-01 |title=The Viewing Geometry of Brown Dwarfs Influences Their Observed Colors and Variability Amplitudes |journal=The Astrophysical Journal |volume=842 |issue=2 |pages=78 |arxiv=1705.06045 |bibcode=2017ApJ...842...78V |doi=10.3847/1538-4357/aa73cf |doi-access=free |issn=0004-637X}}</ref> Assuming the lower bound of i≥68° for SIMP 0136, this results in a transit probability of ≥48.6% for close-in planets. It is however not known how common close-in planets are around brown dwarfs and they might be more common for lower-mass objects, as disk sizes seem to decrease with mass.<ref name=":16" /> Strong evidence of a [[circumbinary planet]] in a polar orbit around [[2M1510]] was presented in 2025. The discovery was made with the [[Very Large Telescope]].<ref name="Baycroft2025">{{Cite journal |last1=Baycroft |first1=Thomas A. |last2=Sairam |first2=Lalitha |last3=Triaud |first3=Amaury H. M. J. |last4=Correia |first4=Alexandre C. M. |date=2025-04-16 |title=Evidence for a polar circumbinary exoplanet orbiting a pair of eclipsing brown dwarfs |journal=Science Advances |volume=11 |issue=16 |pages=eadu0627 |doi=10.1126/sciadv.adu0627|doi-access=free |pmid=40238865 |pmc=12002110 |arxiv=2504.12209 |bibcode=2025SciA...11..627B }}</ref><ref name="ESOpress2025">{{Cite web |title="Big surprise": astronomers find planet in perpendicular orbit around pair of stars |url=https://www.eso.org/public/news/eso2508/ |access-date=2025-04-16 |website=www.eso.org |language=en}}</ref> === Habitability === Habitability for hypothetical planets [[orbit]]ing brown dwarfs has been studied. Computer models suggesting conditions for these bodies to have [[habitable planet]]s are very stringent, the [[habitable zone]] being narrow, close (T dwarf 0.005 au) and decreasing with time, due to the cooling of the brown dwarf (they fuse for at most 10 million years). The orbits there would have to be of extremely low [[Eccentricity (mathematics)|eccentricity]] (on the order of {{val|e=−6}}) to avoid strong [[tidal force]]s that would trigger a [[runaway greenhouse effect]] on the planets, rendering them uninhabitable. There would also be no moons.<ref> {{cite journal |bibcode=2013AsBio..13..279B |arxiv=1211.6467 |doi=10.1089/ast.2012.0867 |title=Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary |date=2011 |last1=Barnes |first1=Rory |last2=Heller |first2=René |journal=Astrobiology |volume=13 |issue=3 |pages=279–291 |pmid=23537137 |pmc=3612282}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)