Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Related concepts=== From the perspective of [[group theory]], the identity {{math|log(''cd'') {{=}} log(''c'') + log(''d'')}} expresses a [[group isomorphism]] between positive [[real number|reals]] under multiplication and reals under addition. Logarithmic functions are the only continuous isomorphisms between these groups.<ref>{{Citation|last1=Bourbaki|first1=Nicolas|author1-link=Nicolas Bourbaki|title=General topology. Chapters 5–10|publisher=[[Springer-Verlag]]|location=Berlin, New York|series=Elements of Mathematics|isbn=978-3-540-64563-4|mr=1726872|year=1998}}, section V.4.1</ref> By means of that isomorphism, the [[Haar measure]] ([[Lebesgue measure]]) {{math|''dx''}} on the reals corresponds to the Haar measure {{math|''dx''/''x''}} on the positive reals.<ref>{{Citation|last1=Ambartzumian|first1=R.V.|author-link=Rouben V. Ambartzumian|title=Factorization calculus and geometric probability|publisher=[[Cambridge University Press]]|isbn=978-0-521-34535-4|year=1990|url-access=registration|url=https://archive.org/details/factorizationcal0000amba}}, section 1.4</ref> The non-negative reals not only have a multiplication, but also have addition, and form a [[semiring]], called the [[probability semiring]]; this is in fact a [[semifield]]. The logarithm then takes multiplication to addition (log multiplication), and takes addition to log addition ([[LogSumExp]]), giving an [[isomorphism]] of semirings between the probability semiring and the [[log semiring]]. [[logarithmic form|Logarithmic one-forms ]]{{math|''df''/''f''}} appear in [[complex analysis]] and [[algebraic geometry]] as [[differential form]]s with logarithmic [[Pole (complex analysis)|poles]].<ref>{{Citation|last1=Esnault|first1=Hélène|last2=Viehweg|first2=Eckart|title=Lectures on vanishing theorems|location=Basel, Boston|publisher=Birkhäuser Verlag|series=DMV Seminar|isbn=978-3-7643-2822-1|mr=1193913|year=1992|volume=20|doi=10.1007/978-3-0348-8600-0|citeseerx=10.1.1.178.3227}}, section 2</ref> The [[polylogarithm]] is the function defined by <math display="block"> \operatorname{Li}_s(z) = \sum_{k=1}^\infty {z^k \over k^s}. </math> It is related to the [[natural logarithm]] by {{math|1=Li<sub>1</sub> (''z'') = −ln(1 − ''z'')}}. Moreover, {{math|Li<sub>''s''</sub> (1)}} equals the [[Riemann zeta function]] {{math|ζ(''s'')}}.<ref>{{dlmf|id= 25.12|first= T.M.|last= Apostol}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)