Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Principal component analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Sparse PCA === {{main|Sparse PCA}} A particular disadvantage of PCA is that the principal components are usually linear combinations of all input variables. [[Sparse PCA]] overcomes this disadvantage by finding linear combinations that contain just a few input variables. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by adding sparsity constraint on the input variables. Several approaches have been proposed, including * a regression framework,<ref> {{cite journal |author1=Hui Zou |author2=Trevor Hastie |author3=Robert Tibshirani |year=2006 |title=Sparse principal component analysis |journal=[[Journal of Computational and Graphical Statistics]] |volume=15 |issue=2 |pages=262β286 |url=http://www-stat.stanford.edu/~hastie/Papers/spc_jcgs.pdf |doi=10.1198/106186006x113430 |citeseerx=10.1.1.62.580 |s2cid=5730904 }}</ref> * a convex relaxation/semidefinite programming framework,<ref name="SDP"> {{cite journal |author1=Alexandre d'Aspremont |author2=Laurent El Ghaoui |author3=Michael I. Jordan |author4=Gert R. G. Lanckriet |year=2007 |title=A Direct Formulation for Sparse PCA Using Semidefinite Programming |journal=[[SIAM Review]] |volume=49 |issue=3 |pages=434β448 |url=http://www.cmap.polytechnique.fr/~aspremon/PDF/sparsesvd.pdf |doi=10.1137/050645506 |arxiv=cs/0406021 |s2cid=5490061 }}</ref> * a generalized power method framework<ref> {{cite journal |author1=Michel Journee |author2=Yurii Nesterov |author3=Peter Richtarik |author4=Rodolphe Sepulchre |year=2010 |title=Generalized Power Method for Sparse Principal Component Analysis |journal=[[Journal of Machine Learning Research]] |volume=11 |pages=517β553 |url=http://jmlr.csail.mit.edu/papers/volume11/journee10a/journee10a.pdf |arxiv=0811.4724 |id=CORE Discussion Paper 2008/70 |bibcode=2008arXiv0811.4724J }}</ref> * an alternating maximization framework<ref> {{cite arXiv |author1=Peter Richtarik |author2=Martin Takac |author3=S. Damla Ahipasaoglu |year=2012 |title=Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes |eprint=1212.4137 |class=stat.ML }}</ref> * forward-backward greedy search and exact methods using branch-and-bound techniques,<ref> {{cite conference |author1=Baback Moghaddam |author2=Yair Weiss |author3=Shai Avidan |year=2005 |chapter=Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms |title=Advances in Neural Information Processing Systems |volume=18 |publisher=MIT Press |chapter-url=http://books.nips.cc/papers/files/nips18/NIPS2005_0643.pdf }}</ref> * Bayesian formulation framework.<ref> {{cite journal |author1=Yue Guan |author2=Jennifer Dy|author2-link=Jennifer Dy |year=2009 |title=Sparse Probabilistic Principal Component Analysis |journal=[[Journal of Machine Learning Research Workshop and Conference Proceedings]] |volume=5 |page=185 |url=http://jmlr.csail.mit.edu/proceedings/papers/v5/guan09a/guan09a.pdf }}</ref> The methodological and theoretical developments of Sparse PCA as well as its applications in scientific studies were recently reviewed in a survey paper.<ref> {{cite journal |author1=Hui Zou |author2=Lingzhou Xue |year=2018 |title=A Selective Overview of Sparse Principal Component Analysis |journal=[[Proceedings of the IEEE]] |volume=106 |issue=8 |pages=1311β1320 |doi=10.1109/JPROC.2018.2846588 |doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)