Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial coefficient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiset (rising) binomial coefficient === {{main|Multichoose#Counting multisets}} Binomial coefficients count subsets of prescribed size from a given set. A related combinatorial problem is to count [[multiset]]s of prescribed size with elements drawn from a given set, that is, to count the number of ways to select a certain number of elements from a given set with the possibility of selecting the same element repeatedly. The resulting numbers are called ''[[Multiset#Counting multisets|multiset coefficients]]'';<ref> {{citation | last = Munarini | first = Emanuele | doi = 10.2298/AADM110609014M | issue = 2 | journal = Applicable Analysis and Discrete Mathematics | mr = 2867317 | pages = 176β200 | title = Riordan matrices and sums of harmonic numbers | volume = 5 | year = 2011| url = http://www.doiserbia.nb.rs/img/doi/1452-8630/2011/1452-86301100014M.pdf }}.</ref> the number of ways to "multichoose" (i.e., choose with replacement) ''k'' items from an ''n'' element set is denoted <math display="inline">\left(\!\!\binom n k\!\!\right)</math>. To avoid ambiguity and confusion with ''n'''s main denotation in this article,<br /> let {{math|1=''f'' = ''n'' = ''r'' + (''k'' β 1)}} and {{math|1=''r'' = ''f'' β (''k'' β 1)}}. Multiset coefficients may be expressed in terms of binomial coefficients by the rule <math display="block">\binom{f}{k}=\left(\!\!\binom{r}{k}\!\!\right)=\binom{r+k-1}{k}.</math> One possible alternative characterization of this identity is as follows: We may define the [[falling factorial]] as <math display="block">(f)_{k}=f^{\underline k}=(f-k+1)\cdots(f-3)\cdot(f-2)\cdot(f-1)\cdot f,</math> and the corresponding rising factorial as <math display="block">r^{(k)}=\,r^{\overline k}=\,r\cdot(r+1)\cdot(r+2)\cdot(r+3)\cdots(r+k-1);</math> so, for example, <math display="block">17\cdot18\cdot19\cdot20\cdot21=(21)_{5}=21^{\underline 5}=17^{\overline 5}=17^{(5)}.</math> Then the binomial coefficients may be written as <math display="block">\binom{f}{k} = \frac{(f)_{k}}{k!} =\frac{(f-k+1)\cdots(f-2)\cdot(f-1)\cdot f}{1\cdot2\cdot3\cdot4\cdot5\cdots k} ,</math> while the corresponding multiset coefficient is defined by replacing the falling with the rising factorial: <math display="block">\left(\!\!\binom{r}{k}\!\!\right)=\frac{r^{(k)}}{k!}=\frac{r\cdot(r+1)\cdot(r+2)\cdots(r+k-1)}{1\cdot2\cdot3\cdot4\cdot5\cdots k}.</math> ==== Generalization to negative integers ''n'' ==== {{Pascal_triangle_extended.svg}} For any ''n'', : <math>\begin{align}\binom{-n}{k} &= \frac{-n\cdot-(n+1)\dots-(n+k-2)\cdot-(n+k-1)}{k!}\\ &=(-1)^k\;\frac{n\cdot(n+1)\cdot(n+2)\cdots (n + k - 1)}{k!}\\ &=(-1)^k\binom{n + k - 1}{k}\\ &=(-1)^k\left(\!\!\binom{n}{k}\!\!\right)\;.\end{align}</math> In particular, binomial coefficients evaluated at negative integers ''n'' are given by signed multiset coefficients. In the special case <math>n = -1</math>, this reduces to <math>(-1)^k=\binom{-1}{k}=\left(\!\!\binom{-k}{k}\!\!\right) .</math> For example, if ''n'' = β4 and ''k'' = 7, then ''r'' = 4 and ''f'' = 10: : <math>\begin{align}\binom{-4}{7} &= \frac {-10\cdot-9\cdot-8\cdot-7\cdot-6\cdot-5\cdot-4} {1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7}\\ &=(-1)^7\;\frac{4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10} {1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7}\\ &=\left(\!\!\binom{-7}{7}\!\!\right)\left(\!\!\binom{4}{7}\!\!\right)=\binom{-1}{7}\binom{10}{7}.\end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)