Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Discrete Fourier transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Some discrete Fourier transform pairs== {| class="wikitable" style="text-align: center;" |+ '''Some DFT pairs''' |- ! <math>x_n = \frac{1}{N}\sum_{k=0}^{N-1}X_k e^{i 2 \pi kn/N} </math> ! <math>X_k = \sum_{n=0}^{N-1}x_n e^{-i 2 \pi kn/N} </math> ! Note |- | <math>x_n e^{i 2 \pi n\ell/N} \,</math> | <math>X_{k-\ell}\,</math> | Frequency shift theorem |- | <math>x_{n-\ell}\,</math> | <math>X_k e^{-i 2 \pi k\ell/N} \,</math> | Time shift theorem |- | <math>x_n \in \mathbb{R}</math> | <math>X_k=X_{N-k}^*\,</math> | Real DFT |- | <math>a^n\,</math> | <math>\left\{ \begin{matrix} N & \mbox{if } a = e^{i 2 \pi k/N} \\ \frac{1-a^N}{1-a \, e^{-i 2 \pi k/N} } & \mbox{otherwise} \end{matrix} \right. </math> | from the [[geometric progression]] formula |- | <math>{N-1 \choose n}\,</math> | <math>\left(1+e^{-i 2 \pi k/N} \right)^{N-1}\,</math> | from the [[binomial theorem]] |- | <math>\left\{ \begin{matrix} \frac{1}{W} & \mbox{if } 2n < W \mbox{ or } 2(N-n) < W \\ 0 & \mbox{otherwise} \end{matrix} \right. </math> | <math>\left\{ \begin{matrix} 1 & \mbox{if } k = 0 \\ \frac{\sin\left(\frac{\pi W k}{N}\right)} {W \sin\left(\frac{\pi k}{N}\right)} & \mbox{otherwise} \end{matrix} \right. </math> | <math>x_n</math> is a rectangular [[window function]] of ''W'' points centered on ''n''=0, where ''W'' is an [[odd integer]], and <math>X_k</math> is a [[sinc]]-like function (specifically, <math>X_k</math> is a [[Dirichlet kernel]]) |- | <math>\sum_{j\in\mathbb{Z}} \exp\left(-\frac{\pi}{cN}\cdot(n+N\cdot j)^2\right)</math> | <math>\sqrt{cN} \cdot \sum_{j\in\mathbb{Z}} \exp\left(-\frac{\pi c}{N}\cdot(k+N\cdot j)^2\right)</math> | [[Discretization]] and [[periodic summation]] of the scaled [[Gaussian function]]s for <math>c>0</math>. Since either <math>c</math> or <math>\frac{1}{c}</math> is larger than one and thus warrants fast convergence of one of the two series, for large <math>c</math> you may choose to compute the frequency spectrum and convert to the time domain using the discrete Fourier transform. |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)