Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ellipse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Three-point form of ellipse equation==== : A consequence, one obtains an equation for the ellipse determined by three non-collinear points <math>P_i = \left(x_i,\, y_i\right)</math>: <math display="block"> \frac{({\color{red}x} - x_1)({\color{red}x} - x_2) + {\color{blue}q}\;({\color{red}y} - y_1)({\color{red}y} - y_2)} {({\color{red}y} - y_1)({\color{red}x} - x_2) - ({\color{red}y} - y_2)({\color{red}x} - x_1)} = \frac{(x_3 - x_1)(x_3 - x_2) + {\color{blue}q}\;(y_3 - y_1)(y_3 - y_2)} {(y_3 - y_1)(x_3 - x_2) - (y_3 - y_2)(x_3 - x_1)}\ . </math> For example, for <math>P_1 = (2,\, 0),\; P_2 = (0,\,1),\; P_3 = (0,\, 0)</math> and <math>q = 4</math> one obtains the three-point form : <math>\frac{(x - 2)x + 4y(y - 1)}{yx - (y - 1)(x - 2)} = 0</math> and after conversion <math>\frac{(x - 1)^2}{2} + \frac{\left(y - \frac{1}{2}\right)^2}{\frac{1}{2}} = 1.</math> Analogously to the circle case, the equation can be written more clearly using vectors: <math display="block"> \frac{\left({\color{red}\vec x} - \vec x_1\right)*\left({\color{red}\vec x} - \vec x_2\right)} {\det\left({\color{red}\vec x} - \vec x_1,{\color{red}\vec x} - \vec x_2\right)} = \frac{\left(\vec x_3 - \vec x_1\right)*\left(\vec x_3 - \vec x_2\right)} {\det\left(\vec x_3 - \vec x_1, \vec x_3 - \vec x_2\right)}, </math> where <math>*</math> is the modified [[dot product]] <math>\vec u*\vec v = u_x v_x + {\color{blue}q}\,u_y v_y.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)