Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Magnetometer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Mineral exploration=== {{Main|Exploration geophysics}} [[File:VHFNV.JPG|thumb|A [[Diamond DA42]] [[light aircraft]], modified for aerial survey with a nose-mounted boom containing a magnetometer at its tip]] Magnetometric surveys can be useful in defining magnetic anomalies which represent ore (direct detection), or in some cases gangue minerals associated with ore deposits (indirect or inferential detection). This includes [[iron ore]], [[magnetite]], [[hematite]], and often [[pyrrhotite]]. Developed countries such as Australia, Canada and USA invest heavily in systematic airborne magnetic surveys of their respective continents and surrounding oceans, to assist with map geology and in the discovery of mineral deposits. Such aeromag surveys are typically undertaken with 400 m line spacing at 100 m elevation, with readings every 10 meters or more. To overcome the asymmetry in the data density, data is interpolated between lines (usually 5 times) and data along the line is then averaged. Such data is gridded to an 80 m Γ 80 m pixel size and image processed using a program like ERMapper. At an exploration lease scale, the survey may be followed by a more detailed helimag or crop duster style fixed wing at 50 m line spacing and 50 m elevation (terrain permitting). Such an image is gridded on a 10 x 10 m pixel, offering 64 times the resolution. Where targets are shallow (<200 m), aeromag anomalies may be followed up with ground magnetic surveys on 10 m to 50 m line spacing with 1 m station spacing to provide the best detail (2 to 10 m pixel grid) (or 25 times the resolution prior to drilling). Magnetic fields from magnetic bodies of ore fall off with the inverse distance cubed ([[dipole]] target), or at best inverse distance squared ([[magnetic monopole]] target). One analogy to the resolution-with-distance is a car driving at night with lights on. At a distance of 400 m one sees one glowing haze, but as it approaches, two headlights, and then the left blinker, are visible. There are many challenges interpreting magnetic data for mineral exploration. Multiple targets mix together like multiple heat sources and, unlike light, there is no magnetic telescope to focus fields. The combination of multiple sources is measured at the surface. The geometry, depth, or magnetisation direction (remanence) of the targets are also generally not known, and so multiple models can explain the data. Potent by Geophysical Software Solutions [https://web.archive.org/web/20131213095908/http://www.geoss.com.au/] is a leading magnetic (and gravity) interpretation package used extensively in the Australian exploration industry. Magnetometers assist mineral explorers both directly (i.e., gold mineralisation associated with [[magnetite]], diamonds in [[kimberlite pipe]]s) and, more commonly, indirectly, such as by mapping geological structures conducive to mineralisation (i.e., shear zones and alteration haloes around granites). Airborne Magnetometers detect the change in the Earth's magnetic field using sensors attached to the aircraft in the form of a "stinger" or by towing a magnetometer on the end of a cable. The magnetometer on a cable is often referred to as a "bomb" because of its shape. Others call it a "bird". Because hills and valleys under the aircraft make the magnetic readings rise and fall, a radar altimeter keeps track of the transducer's deviation from the nominal altitude above ground. There may also be a camera that takes photos of the ground. The location of the measurement is determined by also recording a GPS.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)