Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Summatory functions == Given an additive function <math>f</math>, let its summatory function be defined by <math display="inline">\mathcal{M}_f(x) := \sum_{n \leq x} f(n)</math>. The average of <math>f</math> is given exactly as <math display=block>\mathcal{M}_f(x) = \sum_{p^{\alpha} \leq x} f(p^{\alpha}) \left(\left\lfloor \frac{x}{p^{\alpha}} \right\rfloor - \left\lfloor \frac{x}{p^{\alpha+1}} \right\rfloor\right).</math> The summatory functions over <math>f</math> can be expanded as <math>\mathcal{M}_f(x) = x E(x) + O(\sqrt{x} \cdot D(x))</math> where <math display=block>\begin{align} E(x) & = \sum_{p^{\alpha} \leq x} f(p^{\alpha}) p^{-\alpha} (1-p^{-1}) \\ D^2(x) & = \sum_{p^{\alpha} \leq x} |f(p^{\alpha})|^2 p^{-\alpha}. \end{align}</math> The average of the function <math>f^2</math> is also expressed by these functions as <math display=block>\mathcal{M}_{f^2}(x) = x E^2(x) + O(x D^2(x)).</math> There is always an absolute constant <math>C_f > 0</math> such that for all [[natural number]]s <math>x \geq 1</math>, <math display=block>\sum_{n \leq x} |f(n) - E(x)|^2 \leq C_f \cdot x D^2(x).</math> Let <math display=block>\nu(x; z) := \frac{1}{x} \#\!\left\{n \leq x: \frac{f(n)-A(x)}{B(x)} \leq z\right\}\!.</math> Suppose that <math>f</math> is an additive function with <math>-1 \leq f(p^{\alpha}) = f(p) \leq 1</math> such that as <math>x \rightarrow \infty</math>, <math display=block>B(x) = \sum_{p \leq x} f^2(p) / p \rightarrow \infty.</math> Then <math>\nu(x; z) \sim G(z)</math> where <math>G(z)</math> is the [[normal distribution|Gaussian distribution function]] <math display=block>G(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.</math> Examples of this result related to the [[prime omega function]] and the numbers of prime divisors of shifted primes include the following for fixed <math>z \in \R</math> where the relations hold for <math>x \gg 1</math>: <math display=block>\#\{n \leq x: \omega(n) - \log\log x \leq z (\log\log x)^{1/2}\} \sim x G(z),</math> <math display=block>\#\{p \leq x: \omega(p+1) - \log\log x \leq z (\log\log x)^{1/2}\} \sim \pi(x) G(z).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)