Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive white Gaussian noise
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Coding theorem converse === Here we show that rates above the capacity <math>C = \frac {1}{2} \log\left( 1+\frac P N \right)</math> are not achievable. Suppose that the power constraint is satisfied for a codebook, and further suppose that the messages follow a uniform distribution. Let <math>W</math> be the input messages and <math>\hat{W}</math> the output messages. Thus the information flows as: <math>W \longrightarrow X^{(n)}(W) \longrightarrow Y^{(n)} \longrightarrow \hat{W}</math> Making use of [[Fano's inequality]] gives: <math>H(W\mid\hat{W}) \leq 1+nRP^{(n)}_e = n \varepsilon_n</math> where <math>\varepsilon_n \rightarrow 0</math> as <math>P^{(n)}_e \rightarrow 0</math> Let <math>X_i</math> be the encoded message of codeword index ''i''. Then: : <math> \begin{align} nR & = H(W) \\ & =I(W;\hat{W}) + H(W\mid\hat{W}) \\ & \leq I(W;\hat{W}) + n\varepsilon_n \\ & \leq I(X^{(n)}; Y^{(n)}) + n\varepsilon_n \\ & = h(Y^{(n)}) - h(Y^{(n)}\mid X^{(n)}) + n\varepsilon_n \\ & = h(Y^{(n)}) - h(Z^{(n)}) + n\varepsilon_n \\ & \leq \sum_{i=1}^n h(Y_i)- h(Z^{(n)}) + n\varepsilon_n \\ & \leq \sum_{i=1}^n I(X_i; Y_i) + n\varepsilon_n \end{align} </math> Let <math>P_i</math> be the average power of the codeword of index i: :<math> P_i = \frac{1}{2^{nR}}\sum_{w}x^2_i(w) \,\!</math> where the sum is over all input messages <math>w</math>. <math>X_i</math> and <math>Z_i</math> are independent, thus the expectation of the power of <math>Y_i</math> is, for noise level <math>N</math>: :<math> E(Y_i^2) = P_i+N \,\!</math> And, if <math>Y_i</math> is normally distributed, we have that :<math> h(Y_i) \leq \frac{1}{2}\log{2 \pi e} (P_i +N) \,\!</math> Therefore, : <math> \begin{align} nR & \leq \sum(h(Y_i)-h(Z_i)) + n \varepsilon_n \\ & \leq \sum \left( \frac{1}{2} \log(2 \pi e (P_i + N)) - \frac{1}{2} \log(2 \pi e N)\right) + n \varepsilon_n \\ & = \sum \frac{1}{2} \log \left(1 + \frac{P_i}N \right) + n \varepsilon_n \end{align} </math> We may apply Jensen's equality to <math>\log(1+x)</math>, a concave (downward) function of ''x'', to get: :<math> \frac{1}{n} \sum_{i=1}^n \frac{1}{2}\log\left(1+\frac{P_i}{N}\right) \leq \frac{1}{2}\log\left(1+\frac{1}{n}\sum_{i=1}^n \frac{P_i}{N}\right) \,\!</math> Because each codeword individually satisfies the power constraint, the average also satisfies the power constraint. Therefore, :<math> \frac{1}{n}\sum_{i=1}^n \frac{P_i}{N}, \,\!</math> which we may apply to simplify the inequality above and get: :<math> \frac{1}{2}\log\left(1+\frac{1}{n}\sum_{i=1}^{n}\frac{P_i}{N}\right) \leq \frac{1}{2}\log\left(1+\frac{P}{N}\right). \,\!</math> Therefore, it must be that <math>R \leq \frac{1}{2}\log \left(1+ \frac{P}{N}\right) + \varepsilon_n</math>. Therefore, ''R'' must be less than a value arbitrarily close to the capacity derived earlier, as <math>\varepsilon_n \rightarrow 0</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)