Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Advanced Encryption Standard
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The {{mono|SubBytes}} step === {{Main|Rijndael S-box}} [[Image:AES-SubBytes.svg|right|320px|thumbnail|In the {{mono | SubBytes}} step, each byte in the state is replaced with its entry in a fixed 8-bit lookup table, ''S''; ''b<sub>ij</sub>'' = ''S(a<sub>ij</sub>)''.]] In the {{mono | SubBytes}} step, each byte <math>a_{i,j}</math> in the ''state'' array is replaced with a {{mono | SubByte}} <math>S(a_{i,j})</math> using an 8-bit [[substitution box]]. Before round 0, the ''state'' array is simply the plaintext/input. This operation provides the non-linearity in the [[cipher]]. The S-box used is derived from the [[multiplicative inverse]] over {{math|[[Finite field|GF]](2<sup>8</sup>)}}, known to have good non-linearity properties. To avoid attacks based on simple algebraic properties, the S-box is constructed by combining the inverse function with an invertible [[affine transformation]]. The S-box is also chosen to avoid any fixed points (and so is a [[derangement]]), i.e., <math> S(a_{i,j}) \neq a_{i,j} </math>, and also any opposite fixed points, i.e., <math> S(a_{i,j}) \oplus a_{i,j} \neq \text{FF}_{16} </math>. While performing the decryption, the {{mono | InvSubBytes}} step (the inverse of {{mono | SubBytes}}) is used, which requires first taking the inverse of the affine transformation and then finding the multiplicative inverse.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)