Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Airy function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Complex arguments== We can extend the definition of the Airy function to the complex plane by <math display="block">\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_{C} \exp\left(\tfrac{t^3}{3} - zt\right)\, dt,</math> where the integral is over a path ''C'' starting at the point at infinity with argument {{math|β''Ο''/3}} and ending at the point at infinity with argument Ο/3. Alternatively, we can use the differential equation {{math|1=''y''β²β² β ''xy'' = 0}} to extend {{math|Ai(''x'')}} and {{math|Bi(''x'')}} to [[entire function]]s on the complex plane. The asymptotic formula for {{math|Ai(''x'')}} is still valid in the complex plane if the principal value of {{math|''x''<sup>2/3</sup>}} is taken and {{mvar|x}} is bounded away from the negative real axis. The formula for {{math|Bi(''x'')}} is valid provided {{mvar|x}} is in the sector <math>x\in\C : \left|\arg(x)\right| < \tfrac{\pi}{3} - \delta</math> for some positive Ξ΄. Finally, the formulae for {{math|Ai(β''x'')}} and {{math|Bi(β''x'')}} are valid if {{math|''x''}} is in the sector <math>x\in\C : \left|\arg(x)\right| < \tfrac{2\pi}{3} - \delta.</math> It follows from the asymptotic behaviour of the Airy functions that both {{math|Ai(''x'')}} and {{math|Bi(''x'')}} have an infinity of zeros on the negative real axis. The function {{math|Ai(''x'')}} has no other zeros in the complex plane, while the function {{math|Bi(''x'')}} also has infinitely many zeros in the sector <math>z\in\C : \tfrac{\pi}{3} < \left|\arg(z)\right| < \tfrac{\pi}{2}.</math> ===Plots=== {| style="text-align:center" align=center ! <math>\Re \left[ \operatorname{Ai} ( x + iy) \right] </math> ! <math>\Im \left[ \operatorname{Ai} ( x + iy) \right] </math> ! <math>\left| \operatorname{Ai} ( x + iy) \right| \, </math> ! <math>\operatorname{arg} \left[ \operatorname{Ai} ( x + iy) \right] \, </math> |- |[[File:AiryAi Real Surface.png|200px]] |[[File:AiryAi Imag Surface.png|200px]] |[[File:AiryAi Abs Surface.png|200px]] |[[File:AiryAi Arg Surface.png|200px]] |- |[[File:AiryAi Real Contour.svg|200px]] |[[File:AiryAi Imag Contour.svg|200px]] |[[File:AiryAi Abs Contour.svg|200px]] |[[File:AiryAi Arg Contour.svg|200px]] |} {| style="text-align:center" align=center ! <math>\Re \left[ \operatorname{Bi} ( x + iy) \right] </math> ! <math>\Im \left[ \operatorname{Bi} ( x + iy) \right] </math> ! <math>\left| \operatorname{Bi} ( x + iy) \right| \, </math> ! <math>\operatorname{arg} \left[ \operatorname{Bi} ( x + iy) \right] \, </math> |- |[[File:AiryBi Real Surface.png|200px]] |[[File:AiryBi Imag Surface.png|200px]] |[[File:AiryBi Abs Surface.png|200px]] |[[File:AiryBi Arg Surface.png|200px]] |- |[[File:AiryBi Real Contour.svg|200px]] |[[File:AiryBi Imag Contour.svg|200px]] |[[File:AiryBi Abs Contour.svg|200px]] |[[File:AiryBi Arg Contour.svg|200px]] |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)