Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic–geometric mean
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related concepts == The reciprocal of the arithmetic–geometric mean of 1 and the [[square root of 2]] is [[Gauss's constant]].<math display=block>\frac{1}{M(1, \sqrt{2})} = G = 0.8346268\dots</math>In 1799, Gauss proved<ref group="note">By 1799, Gauss had two proofs of the theorem, but neither of them was rigorous from the modern point of view.</ref> that<math display="block">M(1,\sqrt{2})=\frac{\pi}{\varpi}</math>where <math>\varpi</math> is the [[lemniscate constant]]. In 1941, <math>M(1,\sqrt{2})</math> (and hence <math>G</math>) was proved [[Transcendental number|transcendental]] by [[Theodor Schneider]].<ref group="note">In particular, he proved that the [[beta function]] <math>\Beta (a,b)</math> is transcendental for all <math>a,b\in\mathbb{Q}\setminus\mathbb{Z}</math> such that <math>a+b\notin \mathbb{Z}_0^-</math>. The fact that <math>M(1,\sqrt{2})</math> is transcendental follows from <math>M(1,\sqrt{2})=\tfrac{1}{2}\Beta \left(\tfrac{1}{2},\tfrac{3}{4}\right).</math></ref><ref>{{cite journal |first=Theodor |last=Schneider |url=https://www.deepdyve.com/lp/de-gruyter/zur-theorie-der-abelschen-funktionen-und-integrale-mn0U50bvkB |title=Zur Theorie der Abelschen Funktionen und Integrale |year=1941 |journal=Journal für die reine und angewandte Mathematik |volume=183 |number=19 |pages=110–128 |doi=10.1515/crll.1941.183.110 |s2cid=118624331 }}</ref><ref>{{Cite journal |title=The Lemniscate Constants |last=Todd |first=John |journal=[[Communications of the ACM]] |volume=18 |number=1 <!-- |month=January -->|year=1975 |pages=14–19 |doi=10.1145/360569.360580 |s2cid=85873 |doi-access=free }}</ref> The set <math>\{\pi,M(1,1/\sqrt{2})\}</math> is [[Algebraic independence|algebraically independent]] over <math>\mathbb{Q}</math>,<ref>G. V. Choodnovsky: ''Algebraic independence of constants connected with the functions of analysis'', Notices of the AMS 22, 1975, p. A-486</ref><ref>G. V. Chudnovsky: ''Contributions to The Theory of Transcendental Numbers'', American Mathematical Society, 1984, p. 6</ref> but the set <math>\{\pi,M(1,1/\sqrt{2}),M'(1,1/\sqrt{2})\}</math> (where the prime denotes the [[derivative]] with respect to the second variable) is not algebraically independent over <math>\mathbb{Q}</math>. In fact,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 45</ref><math display="block">\pi=2\sqrt{2}\frac{M^3(1,1/\sqrt{2})}{M'(1,1/\sqrt{2})}.</math>The [[geometric–harmonic mean]] GH can be calculated using analogous sequences of geometric and [[harmonic mean|harmonic]] means, and in fact {{math|1= GH(''x'', ''y'') = 1/''M''(1/''x'', 1/''y'') = ''xy''/''M''(''x'', ''y'')}}.<ref>{{cite journal | last = Newman | first = D. J. | doi = 10.2307/2007804 | journal = Mathematics of Computation | pages = 207–210 | title = A simplified version of the fast algorithms of Brent and Salamin | volume = 44 | year = 1985| issue = 169 | jstor = 2007804 }}</ref> The arithmetic–harmonic mean [[Geometric mean#Iterative means|is equivalent to]] the [[geometric mean]]. The arithmetic–geometric mean can be used to compute – among others – [[Logarithm#Arithmetic–geometric mean approximation|logarithms]], [[Elliptic integral|complete and incomplete elliptic integrals of the first and second kind]],<ref>{{AS ref|17|598–599}}</ref> and [[Jacobi elliptic functions]].<ref>{{cite book |first=Louis V. |last=King |author-link=Louis Vessot King |url=https://archive.org/details/onthenumerical032686mbp |title=On the Direct Numerical Calculation of Elliptic Functions and Integrals |publisher=Cambridge University Press |year=1924 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)