Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic progression
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Product== The [[product (mathematics)|product]] of the members of a finite arithmetic progression with an initial element ''a''<sub>1</sub>, common differences ''d'', and ''n'' elements in total is determined in a closed expression :<math>\begin{align} a_1 a_2 a_3 \cdots a_n &= a_1 (a_1+d) (a_1+2d) \cdots (a_1+(n-1)d) \\[1ex] &= \prod_{k=0}^{n-1} (a_1+kd) = d^n \frac{\Gamma{\left(\frac{a_1}{d} + n\right)}}{\Gamma{\left( \frac{a_1}{d} \right)}} \end{align}</math> where <math>\Gamma</math> denotes the [[Gamma function]]. The formula is not valid when <math>a_1/d</math> is negative or zero. This is a generalization of the facts that the product of the progression <math>1 \times 2 \times \cdots \times n</math> is given by the [[factorial]] <math>n!</math> and that the product :<math>m \times (m+1) \times (m+2) \times \cdots \times (n-2) \times (n-1) \times n </math> for [[Natural number|positive integer]]s <math>m</math> and <math>n</math> is given by :<math>\frac{n!}{(m-1)!}.</math> ===Derivation=== :<math>\begin{align} a_1a_2a_3\cdots a_n &=\prod_{k=0}^{n-1} (a_1+kd) \\[2pt] &= \prod_{k=0}^{n-1} d\left(\frac{a_1}{d}+k\right) \\[2pt] &= d \left (\frac{a_1}{d}\right) d \left (\frac{a_1}{d}+1 \right )d \left ( \frac{a_1}{d}+2 \right )\cdots d \left ( \frac{a_1}{d}+(n-1) \right ) \\[2pt] &= d^n\prod_{k=0}^{n-1} \left(\frac{a_1}{d}+k\right)=d^n {\left(\frac{a_1}{d}\right)}^{\overline{n}} \end{align}</math> where <math>x^{\overline{n}}</math> denotes the [[Pochhammer symbol|rising factorial]]. By the recurrence formula <math>\Gamma(z+1)=z\Gamma(z)</math>, valid for a [[complex number]] <math>z>0</math>, :<math>\Gamma(z+2)=(z+1)\Gamma(z+1)=(z+1)z\Gamma(z)</math>, :<math>\Gamma(z+3)=(z+2)\Gamma(z+2)=(z+2)(z+1)z\Gamma(z)</math>, so that :<math> \frac{\Gamma(z+m)}{\Gamma(z)} = \prod_{k=0}^{m-1}(z+k)</math> for <math>m</math> a positive integer and <math>z</math> a positive complex number. Thus, if <math>a_1/d > 0 </math>, :<math>\prod_{k=0}^{n-1} \left(\frac{a_1}{d}+k\right)= \frac{\Gamma{\left(\frac{a_1}{d} + n\right)}}{\Gamma{\left( \frac{a_1}{d} \right)}},</math> and, finally, :<math>a_1a_2a_3\cdots a_n = d^n\prod_{k=0}^{n-1} \left(\frac{a_1}{d}+k\right) = d^n \frac{\Gamma{\left(\frac{a_1}{d} + n\right)}}{\Gamma{\left( \frac{a_1}{d} \right)}} </math> ===Examples=== ;Example 1 Taking the example <math> 3, 8, 13, 18, 23, 28, \ldots </math>, the product of the terms of the arithmetic progression given by <math>a_n = 3 + 5(n-1) </math> up to the 50th term is :<math>P_{50} = 5^{50} \cdot \frac{\Gamma \left(3/5 + 50\right) }{\Gamma \left( 3 / 5 \right) } \approx 3.78438 \times 10^{98}. </math> ; Example 2 The product of the first 10 odd numbers <math>(1,3,5,7,9,11,13,15,17,19)</math> is given by :<math> 1\cdot 3\cdot 5\cdots 19 =\prod_{k=0}^{9} (1+2k) = 2^{10} \cdot \frac{\Gamma \left(\frac{1}{2} + 10\right) }{\Gamma \left( \frac{1}{2} \right) } </math> = {{formatnum:654729075}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)