Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Associative property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Propositional logic == {{Transformation rules}} === Rule of replacement === In standard truth-functional propositional logic, ''association'',<ref>{{cite book |last1=Moore |first1=Brooke Noel |last2=Parker |first2=Richard |date=2017 |title=Critical Thinking |location=New York |publisher=McGraw-Hill Education |page=321 |isbn=9781259690877|edition=12th }}</ref><ref>{{cite book |last1=Copi |first1=Irving M. |last2=Cohen |first2=Carl |last3=McMahon |first3=Kenneth |date=2014 |title=Introduction to Logic |location=Essex |publisher=Pearson Education |page=387 |isbn=9781292024820|edition=14th }}</ref> or ''associativity''<ref>{{cite book |last1=Hurley |first1=Patrick J. |last2=Watson |first2=Lori |date=2016 |title=A Concise Introduction to Logic |location=Boston |publisher=Cengage Learning |page=427 |isbn=9781305958098|edition=13th }}</ref> are two [[Validity (logic)|valid]] [[rule of replacement|rules of replacement]]. The rules allow one to move parentheses in [[well-formed formula|logical expressions]] in [[formal proof|logical proofs]]. The rules (using [[Logical connective#In language|logical connectives]] notation) are: <math display="block">(P \lor (Q \lor R)) \Leftrightarrow ((P \lor Q) \lor R)</math> and <math display="block">(P \land (Q \land R)) \Leftrightarrow ((P \land Q) \land R),</math> where "<math>\Leftrightarrow</math>" is a [[metalogic]]al [[Symbol (formal)|symbol]] representing "can be replaced in a [[Formal proof|proof]] with". === Truth functional connectives === ''Associativity'' is a property of some [[logical connective]]s of truth-functional [[propositional logic]]. The following [[logical equivalence]]s demonstrate that associativity is a property of particular connectives. The following (and their converses, since {{math|β}} is commutative) are truth-functional [[tautology (logic)|tautologies]].{{citation needed|reason=Stack Exchange is not a reliable source?|date=June 2022}} ;Associativity of disjunction :<math>((P \lor Q) \lor R) \leftrightarrow (P \lor (Q \lor R))</math> ;Associativity of conjunction :<math>((P \land Q) \land R) \leftrightarrow (P \land (Q \land R))</math> ;Associativity of equivalence :<math>((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))</math> [[Logical NOR|Joint denial]] is an example of a truth functional connective that is ''not'' associative.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)