Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Banach–Alaoglu theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Elementary proof=== The following [[elementary proof]] does not utilize [[duality theory]] and requires only basic concepts from set theory, topology, and functional analysis. What is needed from topology is a working knowledge of [[Net (mathematics)|net]] [[Net convergence|convergence]] in [[topological space]]s and familiarity with the fact that a [[Continuous linear functional|linear functional is continuous]] if and only if it is [[Continuous linear operator#bounded on a neighborhood of a point|bounded on a neighborhood]] of the origin (see the articles on [[continuous linear functional]]s and [[sublinear functional]]s for details). Also required is a proper understanding of the technical details of how the space <math>\mathbb{K}^X</math> of all functions of the form <math>X \to \mathbb{K}</math> is identified as the [[Cartesian product]] <math display=inline>\prod_{x \in X} \mathbb{K},</math> and the relationship between [[pointwise convergence]], the [[product topology]], and [[Subspace topology|subspace topologies]] they induce on subsets such as the [[algebraic dual space]] <math>X^{\#}</math> and products of subspaces such as <math display=inline>\prod_{x \in X} B_{r_x}.</math> An explanation of these details is now given for readers who are interested. {{collapse top|title=Primer on product/function spaces, nets, and pointwise convergence|left=true}} For every real <math>r,</math> <math>B_r ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{c \in \mathbb{K} : |c| \leq r\}</math> will denote the closed ball of radius <math>r</math> centered at <math>0</math> and <math>r U ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{r u : u \in U\}</math> for any <math>U \subseteq X,</math> '''Identification of functions with tuples''' The Cartesian product <math display=inline>\prod_{x \in X} \mathbb{K}</math> is usually thought of as the set of all <math>X</math>-indexed [[tuple]]s <math>s_{\bull} = \left(s_x\right)_{x \in X}</math> but, since tuples are technically just functions from an indexing set, it can also be identified with the space <math>\mathbb{K}^X</math> of all functions having prototype <math>X \to \mathbb{K},</math> as is now described: * {{em|Function <math>\to</math> Tuple}}: A function <math>s : X \to \mathbb{K}</math> belonging to <math>\mathbb{K}^X</math> is identified with its (<math>X</math>-indexed) "{{em|tuple of values}}" <math>s_{\bull} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ (s(x))_{x \in X}.</math> * {{em|Tuple <math>\to</math> Function}}: A tuple <math>s_{\bull} = \left(s_x\right)_{x \in X}</math> in <math display=inline>\prod_{x \in X} \mathbb{K}</math> is identified with the function <math>s : X \to \mathbb{K}</math> defined by <math>s(x) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ s_x</math>; this function's "tuple of values" is the original tuple <math>\left(s_x\right)_{x \in X}.</math> This is the reason why many authors write, often without comment, the equality <math display=block>\mathbb{K}^X = \prod_{x \in X} \mathbb{K}</math> and why the Cartesian product <math display=inline>\prod_{x \in X} \mathbb{K}</math> is sometimes taken as the definition of the set of maps <math>\mathbb{K}^X</math> (or conversely). However, the Cartesian product, being the [[Product (category theory)|(categorical) product]] in the [[Category (mathematics)|category]] of [[Category of sets|sets]] (which is a type of [[inverse limit]]), also comes equipped with associated maps that are known as its (coordinate) {{em|projections}}. The {{visible anchor|canonical projection of the Cartesian product}} at a given point <math>z \in X</math> is the function <math display=block>\Pr{}_z : \prod_{x \in X} \mathbb{K} \to \mathbb{K} \quad \text{ defined by } \quad s_{\bull} = \left(s_x\right)_{x \in X} \mapsto s_z</math> where under the above identification, <math>\Pr{}_z</math> sends a function <math>s : X \to \mathbb{K}</math> to <math display=block>\Pr{}_z(s) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ s(z).</math> Stated in words, for a point <math>z</math> and function <math>s,</math> "plugging <math>z</math> into <math>s</math>" is the same as "plugging <math>s</math> into <math>\Pr{}_z</math>". In particular, suppose that <math>\left(r_x\right)_{x \in X}</math> are non-negative real numbers. Then <math>\prod_{x \in X} B_{r_x} \subseteq \prod_{x \in X} \mathbb{K} = \mathbb{K}^X,</math> where under the above identification of tuples with functions, <math>\prod_{x \in X} B_{r_x}</math> is the set of all functions <math>s \in \mathbb{K}^X</math> such that <math>s(x) \in B_{r_x}</math> for every <math>x \in X.</math> If a subset <math>U \subseteq X</math> [[Partition of a set|partitions]] <math>X</math> into <math>X = U \, \cup \,(X \setminus U)</math> then the linear bijection <math display=block>\begin{alignat}{4} H :\;&& \prod_{x \in X} \mathbb{K} &&\;\to \;& \left(\prod_{u \in U} \mathbb{K}\right) \times \prod_{x \in X \setminus U} \mathbb{K} \\[0.3ex] && \left(f_x\right)_{x \in X} &&\;\mapsto\;& \left( \left(f_u\right)_{u \in U}, \; \left(f_x\right)_{x \in X \setminus U} \right) \\ \end{alignat}</math> canonically identifies these two Cartesian products; moreover, this map is a [[homeomorphism]] when these products are endowed with their product topologies. In terms of function spaces, this bijection could be expressed as <math display=block>\begin{alignat}{4} H :\;&& \mathbb{K}^X &&\;\to \;& \mathbb{K}^U \times \mathbb{K}^{X \setminus U} \\[0.3ex] && f &&\;\mapsto\;& \left(f\big\vert_U, \; f\big\vert_{X \setminus U}\right) \\ \end{alignat}.</math> '''Notation for nets and function composition with nets''' A [[Net (mathematics)|net]] <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> in <math>X</math> is by definition a function <math>x_{\bull} : I \to X</math> from a non-empty [[directed set]] <math>(I, \leq).</math> Every [[sequence]] in <math>X,</math> which by definition is just a function of the form <math>\N \to X,</math> is also a net. As with sequences, the value of a net <math>x_{\bull}</math> at an index <math>i \in I</math> is denoted by <math>x_i</math>; however, for this proof, this value <math>x_i</math> may also be denoted by the usual function parentheses notation <math>x_{\bull}(i).</math> Similarly for [[function composition]], if <math>F : X \to Y</math> is any function then the net (or sequence) that results from "plugging <math>x_{\bull}</math> into <math>F</math>" is just the function <math>F \circ x_{\bull} : I \to Y,</math> although this is typically denoted by <math>\left(F\left(x_i\right)\right)_{i \in I}</math> (or by <math>\left(F\left(x_i\right)\right)_{i=1}^{\infty}</math> if <math>x_{\bull}</math> is a sequence). In the proofs below, this resulting net may be denoted by any of the following notations <math display=block>F\left(x_{\bull}\right) = \left(F\left(x_i\right)\right)_{i \in I} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ F \circ x_{\bull},</math> depending on whichever notation is cleanest or most clearly communicates the intended information. In particular, if <math>F : X \to Y</math> is continuous and <math>x_{\bull} \to x</math> in <math>X,</math> then the conclusion commonly written as <math>\left(F\left(x_i\right)\right)_{i \in I} \to F(x)</math> may instead be written as <math>F\left(x_{\bull}\right) \to F(x)</math> or <math>F \circ x_{\bull} \to F(x).</math> '''Topology''' The set <math display=inline>\mathbb{K}^X = \prod_{x \in X} \mathbb{K}</math> is assumed to be endowed with the [[product topology]]. It is well known that the product topology is identical to the [[topology of pointwise convergence]]. This is because given <math>f</math> and a [[Net (mathematics)|net]] <math>\left(f_i\right)_{i \in I},</math> where <math>f</math> and every <math>f_i</math> is an element of <math display=inline>\mathbb{K}^X = \prod_{x \in X} \mathbb{K},</math> then the net <math>\left(f_i\right)_{i \in I} \to f</math> [[Convergent net|converges]] in the product topology if and only if :for every <math>z \in X,</math> the net <math>\Pr{}_z\left(\left(f_i\right)_{i \in I}\right) \to \Pr{}_z(f)</math> converges in <math>\mathbb{K},</math> where because <math>\;\Pr{}_z(f) = f(z)\;</math> and <math display=inline>\Pr{}_z\left(\left(f_i\right)_{i \in I}\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\Pr{}_z\left(f_i\right)\right)_{i \in I} = \left(f_i(z)\right)_{i \in I},</math> this happens if and only if :for every <math>z \in X,</math> the net <math>\left(f_i(z)\right)_{i \in I} \to f(z)</math> converges in <math>\mathbb{K},</math> Thus <math>\left(f_i\right)_{i \in I}</math> converges to <math>f</math> in the product topology if and only if it converges to <math>f</math> pointwise on <math>X.</math> This proof will also use the fact that the topology of pointwise convergence is preserved when passing to [[topological subspace]]s. This means, for example, that if for every <math>x \in X,</math> <math>S_x \subseteq \mathbb{K}</math> is some [[Topological subspace|(topological) subspace]] of <math>\mathbb{K}</math> then the topology of pointwise convergence (or equivalently, the product topology) on <math display=inline>\prod_{x \in X} S_x</math> is equal to the [[subspace topology]] that the set <math display=inline>\prod_{x \in X} S_x</math> inherits from <math display=inline>\prod_{x \in X} \mathbb{K}.</math> And if <math>S_x</math> is closed in <math>\mathbb{K}</math> for every <math>x \in X,</math> then <math display=inline>\prod_{x \in X} S_x</math> is a closed subset of <math display=inline>\prod_{x \in X} \mathbb{K}.</math> '''Characterization of <math>\sup_{u \in U} |f(u)| \leq r</math>''' An important fact used by the proof is that for any real <math>r,</math> <math display=block>\sup_{u \in U} |f(u)| \leq r \qquad \text{ if and only if } \qquad f(U) \subseteq B_r</math> where <math>\,\sup\,</math> denotes the [[supremum]] and <math>f(U) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{f(u) : u \in U\}.</math> As a side note, this characterization does not hold if the closed ball <math>B_r</math> is replaced with the open ball <math>\{c \in \mathbb{K} : |c| < r\}</math> (and replacing <math>\;\sup_{u \in U} |f(u)| \leq r\;</math> with the strict inequality <math>\;\sup_{u \in U} |f(u)| < r\;</math> will not change this; for counter-examples, consider <math>X ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \mathbb{K}</math> and the [[identity map]] <math>f ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \operatorname{Id}</math> on <math>X</math>). {{collapse bottom}} The essence of the Banach–Alaoglu theorem can be found in the next proposition, from which the Banach–Alaoglu theorem follows. Unlike the Banach–Alaoglu theorem, this proposition does {{em|not}} require the vector space <math>X</math> to endowed with any topology. {{Math theorem|name=Proposition{{sfn|Narici|Beckenstein|2011|pp=225-273}}|math_statement= Let <math>U</math> be a subset of a vector space <math>X</math> over the field <math>\mathbb{K}</math> (where <math>\mathbb{K} = \R \text{ or } \mathbb{K} = \Complex</math>) and for every real number <math>r,</math> endow the closed ball <math display=inline>B_r ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{s \in \mathbb{K} : |s| \leq r\}</math> with its [[Subspace topology|usual topology]] (<math>X</math> need not be endowed with any topology, but <math>\mathbb{K}</math> has its usual [[Euclidean topology]]). Define <math display=block>U^{\#} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \Big\{f \in X^{\#} ~:~ \sup_{u \in U} |f(u)| \leq 1\Big\}.</math> If for every <math>x \in X,</math> <math>r_x > 0</math> is a real number such that <math>x \in r_x U,</math> then <math>U^{\#}</math> is a closed and [[Compact space|compact]] [[Topological subspace|subspace]] of the [[product space]] <math>\prod_{x \in X} B_{r_x}</math> (where because this [[product topology]] is identical to the [[topology of pointwise convergence]], which is also called the [[weak-* topology]] in functional analysis, this means that <math>U^{\#}</math> is compact in the weak-* topology or "weak-* compact" for short). }} Before proving the proposition above, it is first shown how the Banach–Alaoglu theorem follows from it (unlike the proposition, Banach–Alaoglu assumes that <math>X</math> is a [[topological vector space]] (TVS) and that <math>U</math> is a neighborhood of the origin). {{Math proof|drop=hidden|title=Proof that Banach–Alaoglu follows from the proposition above|proof= Assume that <math>X</math> is a [[topological vector space]] with continuous dual space <math>X^{\prime}</math> and that <math>U</math> is a neighborhood of the origin. Because <math>U</math> is a neighborhood of the origin in <math>X,</math> it is also an [[Absorbing set|absorbing subset]] of <math>X,</math> so for every <math>x \in X,</math> there exists a real number <math>r_x > 0</math> such that <math>x \in r_x U.</math> Thus the hypotheses of the above proposition are satisfied, and so the set <math>U^{\#}</math> is therefore compact in the [[weak-* topology]]. The proof of the Banach–Alaoglu theorem will be complete once it is shown that <math>U^{\#} = U^{\circ},</math><ref group=note>If <math>\tau</math> denotes the topology that <math>X</math> is (originally) endowed with, then the equality <math>U^{\circ} = U^{\#}</math> shows that the polar <math>U^{\circ} = \Big\{f \in X^{\prime} ~:~ \sup_{u \in U} |f(u)| \leq 1\Big\}</math> of <math>U</math> is dependent {{em|only}} on <math>U</math> (and <math>X^{\#}</math>) and that the rest of the topology <math>\tau</math> can be ignored. To clarify what is meant, suppose <math>\sigma</math> is any TVS topology on <math>X</math> such that the set <math>U</math> is (also) a neighborhood of the origin in <math>(X, \sigma).</math> Denote the continuous dual space of <math>(X, \sigma)</math> by <math>(X, \sigma)^{\prime}</math> and denote the polar of <math>U</math> with respect to <math>(X, \sigma)</math> by <math display=block>U^{\circ, \sigma} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \Big\{f \in (X, \sigma)^{\prime} ~:~ \sup_{u \in U} |f(u)| \leq 1\Big\}</math> so that <math>U^{\circ, \tau}</math> is just the set <math>U^{\circ}</math> from above. Then <math>U^{\circ, \tau} = U^{\circ, \sigma}</math> because both of these sets are equal to <math>U^{\#}.</math> Said differently, the polar set <math>U^{\circ, \sigma}</math>'s defining "requirement" that <math>U^{\circ, \sigma}</math> be a subset of the '''{{em|continuous}}''' dual space <math>(X, \sigma)^{\prime}</math> is inconsequential and can be ignored because it does not have any effect on the resulting set of linear functionals. However, if <math>\nu</math> is a TVS topology on <math>X</math> such that <math>U</math> is {{em|not}} a neighborhood of the origin in <math>(X, \nu)</math> then the polar <math>U^{\circ, \nu}</math> of <math>U</math> with respect to <math>(X, \nu)</math> is not guaranteed to equal <math>U^{\#}</math> and so the topology <math>\nu</math> can not be ignored.</ref> where recall that <math>U^{\circ}</math> was defined as <math display=block>U^{\circ} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \Big\{f \in X^{\prime} ~:~ \sup_{u \in U} |f(u)| \leq 1\Big\} ~=~ U^{\#} \cap X^{\prime}.</math> '''Proof that <math>U^{\circ} = U^{\#}:</math>''' Because <math>U^{\circ} = U^{\#} \cap X^{\prime},</math> the conclusion is equivalent to <math>U^{\#} \subseteq X^{\prime}.</math> If <math>f \in U^{\#}</math> then <math>\;\sup_{u \in U} |f(u)| \leq 1,\,</math> which states exactly that the linear functional <math>f</math> is bounded on the neighborhood <math>U;</math> thus <math>f</math> is a [[continuous linear functional]] (that is, <math>f \in X^{\prime}</math>), as desired. <math>\blacksquare</math> }} {{Math proof|drop=hidden|title=Proof of Proposition|proof= The [[Product space (topology)|product space]] <math display=inline>\prod_{x \in X} B_{r_x}</math> is compact by [[Tychonoff's theorem]] (since each closed ball <math>B_{r_x} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{s \in \mathbb{K} : |s| \leq r_x\}</math> is a [[Hausdorff space|Hausdorff]]<ref group=note>Because every <math>B_{r_x}</math> is also a [[Hausdorff space]], the conclusion that <math>\prod_{x \in X} B_{r_x}</math> is compact only requires the so-called "Tychonoff's theorem for compact Hausdorff spaces," which is equivalent to the [[ultrafilter lemma]] and strictly weaker than the [[axiom of choice]].</ref> [[compact space]]). Because a closed subset of a compact space is compact, the proof of the proposition will be complete once it is shown that <math display=block>U^{\#} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \Big\{f \in X^{\#} ~:~ \sup_{u \in U} |f(u)| \leq 1\Big\} ~=~ \left\{f \in X^{\#} ~:~ f(U) \subseteq B_1\right\}</math> is a closed subset of <math display=inline>\prod_{x \in X} B_{r_x}.</math> The following statements guarantee this conclusion: #<math>U^{\#} \subseteq \prod_{x \in X} B_{r_x}.</math> #<math>U^{\#}</math> is a closed subset of the [[product space]] <math>\prod_{x \in X} \mathbb{K} = \mathbb{K}^X.</math> '''Proof of (1)''': For any <math>z \in X,</math> let <math display=inline>\Pr{}_z : \prod_{x \in X} \mathbb{K} \to \mathbb{K}</math> denote the projection to the <math>z</math><sup>th</sup> coordinate ([[#canonical projection of the Cartesian product|as defined above]]). To prove that <math display=inline>U^{\#} \subseteq \prod_{x \in X} B_{r_x},</math> it is sufficient (and necessary) to show that <math>\Pr{}_x\left(U^{\#}\right) \subseteq B_{r_x}</math> for every <math>x \in X.</math> So fix <math>x \in X</math> and let <math>f \in U^{\#}.</math> Because <math>\Pr{}_x(f) \,=\, f(x),</math> it remains to show that <math>f(x) \in B_{r_x}.</math> Recall that <math>r_x > 0</math> was defined in the proposition's statement as being any positive real number that satisfies <math>x \in r_x U</math> (so for example, <math>r_u := 1</math> would be a valid choice for each <math>u \in U</math>), which implies <math>\,u_x ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \frac{1}{r_x} \, x \in U.\,</math> Because <math>f</math> is a [[Strict positive homogeneity|positive homogeneous]] function that satisfies <math>\;\sup_{u \in U} |f(u)| \leq 1,\,</math> <math display=block>\frac{1}{r_x}|f(x)| = \left|\frac{1}{r_x} f(x)\right| = \left|f\left(\frac{1}{r_x} x\right)\right| = \left|f\left(u_x\right)\right| \leq \sup_{u \in U} |f(u)| \leq 1.</math> Thus <math>|f(x)| \leq r_x,</math> which shows that <math>f(x) \in B_{r_x},</math> as desired. '''Proof of (2)''': The [[algebraic dual space]] <math>X^{\#}</math> is always a closed subset of <math display=inline>\mathbb{K}^X = \prod_{x \in X} \mathbb{K}</math> (this is proved in [[#Algebraic dual space is closed in the space of all functions|the lemma below]] for readers who are not familiar with this result). The set <math display=block>\begin{alignat}{9} U_{B_1} &\,\stackrel{\scriptscriptstyle\text{def}}{=}\, \Big\{ ~~\;~~\;~~\;~~ f\ \in \mathbb{K}^X ~~\;~~ : \sup_{u \in U} |f(u)| \leq 1\Big\} \\ &= \big\{ ~~\;~~\;~~\;~~f \, \in \mathbb{K}^X ~~\;~~ : f(u) \in B_1 \text{ for all } u \in U\big\} \\ &= \Big\{\left(f_x\right)_{x \in X} \in \prod_{x \in X} \mathbb{K} \,~:~ \; ~f_u~ \in B_1 \text{ for all } u \in U\Big\} \\ &= \prod_{x \in X} C_x \quad \text{ where } \quad C_x ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \begin{cases} B_1 & \text{ if } x \in U \\ \mathbb{K} & \text{ if } x \not\in U \\ \end{cases} \\ \end{alignat}</math> is closed in the [[product topology]] on <math>\prod_{x \in X} \mathbb{K} = \mathbb{K}^X</math> since it is a product of closed subsets of <math>\mathbb{K}.</math> Thus <math>U_{B_1} \cap X^{\#} = U^{\#}</math> is an intersection of two closed subsets of <math>\mathbb{K}^X,</math> which proves (2).<ref group=note>The conclusion <math>U_{B_1} = \prod_{x \in X} C_x</math> can be written as <math>U_{B_1} ~=~ \Big(\prod_{u \in U} B_1\Big) \times \prod_{x \in X \setminus U} \mathbb{K}.</math> The set <math>U^{\#}</math> may thus equivalently be defined by <math>U^{\#} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ X^{\#} \cap \left[\Big(\prod_{u \in U} B_1\Big) \times \prod_{x \in X \setminus U} \mathbb{K}\right].</math> Rewriting the definition in this way helps make it apparent that the set <math>U^{\#}</math> is closed in <math>\prod_{x \in X} \mathbb{K}</math> because [[#Algebraic dual space is closed in the space of all functions|this is true of <math>X^{\#}.</math>]]</ref> <math>\blacksquare</math> }} The conclusion that the set <math>U_{B_1} = \left\{f \in \mathbb{K}^X : f(U) \subseteq B_1\right\}</math> is closed can also be reached by applying the following more general result, this time proved using nets, to the special case <math>Y := \mathbb{K}</math> and <math>B := B_1.</math><!-- NOTE: This added generality does not make the proof more difficult because the proof is nearly identical to the proof of the special space where Y = K and B = B_1. In fact, the generality simplified the proof slightly (compared to the older version from e.g. 26 November 2021) --> :'''Observation''': If <math>U \subseteq X</math> is any set and if <math>B \subseteq Y</math> is a [[Closed set|closed]] subset of a topological space <math>Y,</math> then <math>U_B ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left\{f \in Y^X : f(U) \subseteq B\right\}</math> is a closed subset of <math>Y^X</math> in the topology of pointwise convergence. :'''Proof of observation''': Let <math>f \in Y^X</math> and suppose that <math>\left(f_i\right)_{i \in I}</math> is a net in <math>U_B</math> that converges pointwise to <math>f.</math> It remains to show that <math>f \in U_B,</math> which by definition means <math>f(U) \subseteq B.</math> For any <math>u \in U,</math> because <math>\left(f_i(u)\right)_{i \in I} \to f(u)</math> in <math>Y</math> and every value <math>f_i(u) \in f_i(U) \subseteq B</math> belongs to the closed (in <math>Y</math>) subset <math>B,</math> so too must this net's limit belong to this closed set; thus <math>f(u) \in B,</math> which completes the proof. <math>\blacksquare</math> {{math theorem|name=Lemma (<math>X^{\#}</math> is closed in <math>\mathbb{K}^X</math>){{anchor|Algebraic dual space is closed in the space of all functions}}|note=|style=|math_statement= The [[algebraic dual space]] <math>X^{\#}</math> of any vector space <math>X</math> over a field <math>\mathbb{K}</math> (where <math>\mathbb{K}</math> is <math>\R</math> or <math>\Complex</math>) is a closed subset of <math display=inline>\mathbb{K}^X = \prod_{x \in X} \mathbb{K}</math> in the topology of pointwise convergence. (The vector space <math>X</math> need not be endowed with any topology). }} {{collapse top|title=Proof of lemma|left=true}} Let <math>f \in \mathbb{K}^X</math> and suppose that <math>f_{\bull} = \left(f_i\right)_{i \in I}</math> is a net in <math>X^{\#}</math> the converges to <math>f</math> in <math>\mathbb{K}^X.</math> To conclude that <math>f \in X^{\#},</math> it must be shown that <math>f</math> is a linear functional. So let <math>s</math> be a scalar and let <math>x, y \in X.</math> For any <math>z \in X,</math> let <math>f_{\bull}(z) : I \to \mathbb{K}</math> denote {{em|<math>f_{\bull}</math>'s net of values at <math>z</math>}} <math display=block>f_{\bull}(z) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(f_i(z)\right)_{i \in I}.</math> Because <math>f_{\bull} \to f</math> in <math>\mathbb{K}^X,</math> which has the topology of pointwise convergence, <math>f_{\bull}(z) \to f(z)</math> in <math>\mathbb{K}</math> for every <math>z \in X.</math> By using <math>x, y, sx, \text{ and } x + y,</math> in place of <math>z,</math> it follows that each of the following nets of scalars converges in <math>\mathbb{K}:</math> <math display=block>f_{\bull}(x) \to f(x), \quad f_{\bull}(y) \to f(y), \quad f_{\bull}(x + y) \to f(x + y), \quad \text{ and } \quad f_{\bull}(sx) \to f(sx).</math> Proof that <math>f(s x) = s f(x):</math> Let <math>M : \mathbb{K} \to \mathbb{K}</math> be the "multiplication by <math>s</math>" map defined by <math>M(c) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ s c.</math> Because <math>M</math> is continuous and <math>f_{\bull}(x) \to f(x)</math> in <math>\mathbb{K},</math> it follows that <math>M\left(f_{\bull}(x)\right) \to M(f(x))</math> where the right hand side is <math>M(f(x)) = s f(x)</math> and the left hand side is <math display=block>\begin{alignat}{4} M\left(f_{\bull}(x)\right) \stackrel{\scriptscriptstyle\text{def}}{=}&~ M \circ f_{\bull}(x) && \text{ by definition of notation } \\ =&~ \left(M\left(f_i(x)\right)\right)_{i \in I} ~~~ && \text{ because } f_{\bull}(x) = \left(f_i(x)\right)_{i \in I} : I \to \mathbb{K} \\ =&~ \left(s f_i(x)\right)_{i \in I} && M\left(f_i(x)\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ s f_i(x) \\ =&~ \left(f_i(s x)\right)_{i \in I} && \text{ by linearity of } f_i \\ =&~ f_{\bull}(sx) && \text{ notation } \end{alignat}</math> which proves that <math>f_{\bull}(sx) \to s f(x).</math> Because also <math>f_{\bull}(sx) \to f(sx)</math> and limits in <math>\mathbb{K}</math> are unique, it follows that <math>s f(x) = f(s x),</math> as desired. Proof that <math>f(x + y) = f(x) + f(y):</math> Define a net <math>z_{\bull} = \left(z_i\right)_{i \in I} : I \to \mathbb{K} \times \mathbb{K}</math> by letting <math>z_i ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(f_i(x), f_i(y)\right)</math> for every <math>i \in I.</math> Because <math>f_{\bull}(x) = \left(f_i(x)\right)_{i \in I} \to f(x)</math> and <math>f_{\bull}(y) = \left(f_i(y)\right)_{i \in I} \to f(y),</math> it follows that <math>z_{\bull} \to ( f(x), f(y) )</math> in <math>\mathbb{K} \times \mathbb{K}.</math> Let <math>A : \mathbb{K} \times \mathbb{K} \to \mathbb{K}</math> be the addition map defined by <math>A(x, y) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ x + y.</math> The continuity of <math>A</math> implies that <math>A\left(z_{\bull}\right) \to A(f(x), f(y))</math> in <math>\mathbb{K}</math> where the right hand side is <math>A(f(x), f(y)) = f(x) + f(y)</math> and the left hand side is <math display=block>A\left(z_{\bull}\right) ~\stackrel{\scriptscriptstyle\text{def}}{=}~ A \circ z_{\bull} = \left(A\left(z_i\right)\right)_{i \in I} = \left(A\left(f_i(x), f_i(y)\right)\right)_{i \in I} = \left(f_i(x) + f_i(y)\right)_{i \in I} = \left(f_i(x + y)\right)_{i \in I} = f_{\bull}(x + y) </math> which proves that <math>f_{\bull}(x + y) \to f(x) + f(y).</math> Because also <math>f_{\bull}(x + y) \to f(x + y),</math> it follows that <math>f(x + y) = f(x) + f(y),</math> as desired. <math>\blacksquare</math> <!-- Removed information Alternative proof outline: The proof above did not involve [[Cauchy net]]s or even anything related to the [[uniform structure]] (specifically, the [[product uniformity]]) that the product space <math>\prod_{x \in X} \mathbb{K} = \mathbb{K}^X</math> is endowed with. However, it is possible to prove this lemma by first showing that <math>X^{\#}</math> is a [[Complete topological vector space|complete TVS]] and then concluding that it is a closed subset of the Hausdorff space <math>\mathbb{K}^X</math> (because every complete subspace of a Hausdorff space is necessarily a closed subset). This involves dealing with [[Cauchy net]]s, where it can be shown that a net <math>f_{\bull}</math> is Cauchy in the topology of pointwise convergence if and only if for every point <math>x \in X,</math> the net of values <math>\left(f_i(x)\right)_{i \in I}</math> is Cauchy in <math>\mathbb{K}.</math> Showing that <math>X^{\#}</math> is a complete space requires showing that every Cauchy net <math>f_{\bull}</math> in <math>X^{\#}</math> converges to some element <math>f</math> of <math>X^{\#}.</math> However, such a proof would require additional steps such as constructing the function <math>f</math> from the net <math>f_{\bull}</math> and then proving that <math>f \in X^{\#}</math> and that <math>f_{\bull} \to f</math> in <math>X^{\#}.</math> --- End: Removed information --> {{collapse bottom}}<!-- END OF PROOF OF LEMMA --> [[#Algebraic dual space is closed in the space of all functions|The lemma above]] actually also follows from its corollary below since <math>\prod_{x \in X} \mathbb{K}</math> is a Hausdorff [[complete uniform space]] and any subset of such a space (in particular <math>X^{\#}</math>) is closed if and only if it is complete. {{math theorem|name=Corollary to lemma (<math>X^{\#}</math> is weak-* complete)|note=|style=|math_statement= When the [[algebraic dual space]] <math>X^{\#}</math> of a vector space <math>X</math> is equipped with the topology <math>\sigma\left(X^{\#}, X\right)</math> of pointwise convergence (also known as the weak-* topology) then the resulting [[topological space]] <math>\left(X^{\#}, \sigma\left(X^{\#}, X\right)\right)</math> is a [[Complete topological vector space|complete]] [[Hausdorff space|Hausdorff]] [[Locally convex topological vector space|locally convex]] [[topological vector space]]. }} {{collapse top|title=Proof of corollary to lemma|left=true}} <!-- {{math proof|title=Proof of corollary|proof=}} --> Because the underlying field <math>\mathbb{K}</math> is a complete Hausdorff locally convex topological vector space, the same is true of the [[product space]] <math display=inline>\mathbb{K}^X = \prod_{x \in X} \mathbb{K}.</math> A closed subset of a complete space is complete, so by the lemma, the space <math>\left(X^{\#}, \sigma\left(X^{\#}, X\right)\right)</math> is complete. <math>\blacksquare</math> {{collapse bottom}} The above elementary proof of the Banach–Alaoglu theorem actually shows that if <math>U \subseteq X</math> is any subset that satisfies <math>X = (0, \infty) U ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \{r u : r > 0, u \in U\}</math> (such as any [[Absorbing set|absorbing subset]] of <math>X</math>), then <math>U^{\#} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left\{f \in X^{\#} : f(U) \subseteq B_1\right\}</math> is a [[Weak-* topology|weak-* compact]] subset of <math>X^{\#}.</math> As a side note, with the help of the above elementary proof, it may be shown (see this footnote)<ref group=proof> <!-- It suffices to prove that <math>P = \left(\cap \operatorname{Box}_P\right) \cap X^{\#} </math> because then <math>P \subseteq X^{\prime} \subseteq X^{\#}</math> will imply <math>P = \left(\cap \operatorname{Box}_P\right) \cap X^{\prime}.</math> --> For any non-empty subset <math>A \subseteq [0, \infty),</math> the equality <math>\cap \left\{B_a : a \in A\right\} = B_{\inf_{} A}</math> holds (the intersection on the left is a closed, rather than open, disk − possibly of radius <math>0</math> − because it is an intersection of closed subsets of <math>\mathbb{K}</math> and so must itself be closed). For every <math>x \in X,</math> let <math>m_x = \inf_{} \left\{ R_x : R_{\bull} \in T_P \right\}</math> so that the previous set equality implies <math>\cap \operatorname{Box}_P = \bigcap_{R_{\bull} \in T_P} \prod_{x \in X} B_{R_x} = \prod_{x \in X} \bigcap_{R_{\bull} \in T_P} B_{R_x} = \prod_{x \in X} B_{m_x}.</math> From <math>P \subseteq \cap \operatorname{Box}_P</math> it follows that <math>m_{\bull} \in T_P</math> and <math>\cap \operatorname{Box}_P \in \operatorname{Box}_P,</math> thereby making <math>\cap \operatorname{Box}_P</math> the [[least element]] of <math>\operatorname{Box}_P</math> with respect to <math>\,\subseteq.\,</math> (In fact, the [[Family of sets|family]] <math>\operatorname{Box}_P</math> is closed under (non-[[Nullary intersection|nullary]]) arbitrary intersections and also under finite unions of at least one set). The elementary proof showed that <math>T_P</math> and <math>\operatorname{Box}_P</math> are not empty and moreover, it also even showed that <math>T_P</math> has an element <math>\left(r_x\right)_{x \in X}</math> that satisfies <math>r_u = 1</math> for every <math>u \in U,</math> which implies that <math>m_u \leq 1</math> for every <math>u \in U.</math> The inclusion <math>P ~\subseteq~ \left(\cap \operatorname{Box}_P\right) \cap X^{\prime} ~\subseteq~ \left(\cap \operatorname{Box}_P\right) \cap X^{\#}</math> is immediate; to prove the reverse inclusion, let <math>f \in \left(\cap \operatorname{Box}_P\right) \cap X^{\#}.</math> By definition, <math>f \in P ~\stackrel{\scriptscriptstyle\text{def}}{=}~ U^{\#}</math> if and only if <math>\sup_{u \in U} |f(u)| \leq 1,</math> so let <math>u \in U</math> and it remains to show that <math>|f(u)| \leq 1.</math> From <math>f \in \cap \operatorname{Box}_P = \prod B_{m_\bull},</math> it follows that <math>f(u) = \Pr{}_u (f) \in \Pr{}_u \left(\prod_{x \in X} B_{m_x}\right) = B_{m_u},</math> which implies that <math>|f(u)| \leq m_u \leq 1,</math> as desired. <math>\blacksquare</math> </ref> that there exist <math>X</math>-indexed non-negative real numbers <math>m_{\bull} = \left(m_x\right)_{x \in X}</math> such that <math display=block>\begin{alignat}{4} U^{\circ} &= U^{\#} && \\ &= X^{\#} && \cap \prod_{x \in X} B_{m_x} \\ &= X^{\prime} && \cap \prod_{x \in X} B_{m_x} \\ \end{alignat}</math> where these real numbers <math>m_{\bull}</math> can also be chosen to be "minimal" in the following sense: using <math>P ~\stackrel{\scriptscriptstyle\text{def}}{=}~ U^{\circ}</math> (so <math>P = U^{\#}</math> as in the proof) and defining the notation <math>\prod B_{R_\bull} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \prod_{x \in X} B_{R_x}</math> for any <math>R_{\bull} = \left(R_x\right)_{x \in X} \in \R^X,</math> if <math display=block>T_P ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left\{R_{\bull} \in \R^X ~:~ P \subseteq \prod B_{R_\bull}\right\}</math> then <math>m_{\bull} \in T_P</math> and for every <math>x \in X,</math> <math>m_x = \inf \left\{ R_x : R_{\bull} \in T_P \right\},</math> which shows that these numbers <math>m_{\bull}</math> are unique; indeed, this [[infimum]] formula can be used to define them. In fact, if <math>\operatorname{Box}_P</math> denotes the set of all such products of closed balls containing the polar set <math>P,</math> <math display=block>\operatorname{Box}_P ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left\{ \prod B_{R_\bull} ~:~ R_{\bull} \in T_P \right\} ~=~ \left\{ \prod B_{R_\bull} ~:~ P \subseteq \prod B_{R_\bull} \right\},</math> then <math display=inline>\prod B_{m_\bull} = \cap \operatorname{Box}_P \in \operatorname{Box}_P</math> where <math display=inline>\bigcap \operatorname{Box}_P</math> denotes the intersection of all sets belonging to <math>\operatorname{Box}_P.</math> This implies (among other things<ref group=note>This tuple <math>m_{\bull} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(m_x\right)_{x \in X}</math> is the [[least element]] of <math>T_P</math> with respect to natural induced pointwise [[partial order]] defined by <math>R_{\bull} \leq S_{\bull}</math> if and only if <math>R_x \leq S_x</math> for every <math>x \in X.</math> Thus, every neighborhood <math>U</math> of the origin in <math>X</math> can be associated with this unique (minimum) function <math>m_{\bull} : X \to [0, \infty).</math> For any <math>x \in X,</math> if <math>r > 0</math> is such that <math>x \in r U</math> then <math>m_x \leq r</math> so that in particular, <math>m_0 = 0</math> and <math>m_u \leq 1</math> for every <math>u \in U.</math></ref>) that <math display=inline>\prod B_{m_\bull} = \prod_{x \in X} B_{m_x}</math> the unique [[least element]] of <math>\operatorname{Box}_P</math> with respect to <math>\,\subseteq;</math> this may be used as an alternative definition of this (necessarily [[Convex set|convex]] and [[Balanced set|balanced]]) set. The function <math>m_{\bull} ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(m_x\right)_{x \in X} : X \to [0, \infty)</math> is a [[seminorm]] and it is unchanged if <math>U</math> is replaced by the [[convex balanced hull]] of <math>U</math> (because <math>U^{\#} = [\operatorname{cobal} U]^{\#}</math>). Similarly, because <math>U^{\circ} = \left[\operatorname{cl}_X U\right]^{\circ},</math> <math>m_{\bull}</math> is also unchanged if <math>U</math> is replaced by its [[Closure (topology)|closure]] in <math>X.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)