Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bayesian statistics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Statistical modeling=== The formulation of [[statistical model]]s using Bayesian statistics has the identifying feature of requiring the specification of [[prior distribution]]s for any unknown parameters. Indeed, parameters of prior distributions may themselves have prior distributions, leading to [[Bayesian hierarchical modeling]],<ref name="KruschkeVanpaemel2015">{{cite book |last1=Kruschke|first1=J K|author-link1=John K. Kruschke |last2=Vanpaemel |first2=W |chapter=Bayesian Estimation in Hierarchical Models |pages=279–299 |title=The Oxford Handbook of Computational and Mathematical Psychology |editor-last1=Busemeyer |editor-first1=J R |editor-last2=Wang |editor-first2=Z |editor-last3=Townsend |editor-first3=J T |editor-last4=Eidels |editor-first4=A |year=2015 |publisher=Oxford University Press |url=https://jkkweb.sitehost.iu.edu/articles/KruschkeVanpaemel2015.pdf}}</ref><ref name=":bmdl">Hajiramezanali, E. & Dadaneh, S. Z. & Karbalayghareh, A. & Zhou, Z. & Qian, X. Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. {{ArXiv|1810.09433}}</ref><ref>{{Cite journal |last1=Lee|first1=Se Yoon |first2=Bani|last2=Mallick| title = Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas|journal=Sankhya B|year=2021|volume=84 |pages=1–43 |doi=10.1007/s13571-020-00245-8|doi-access=}}</ref> also known as multi-level modeling. A special case is [[Bayesian networks]]. For conducting a Bayesian statistical analysis, best practices are discussed by van de Schoot et al.<ref name="vandeShootEtAl2021">{{cite journal|last1=van de Schoot |first1=Rens|last2=Depaoli |first2=Sarah |last3=King |first3=Ruth |last4=Kramer |first4=Bianca |last5=Märtens |first5=Kaspar |last6=Tadesse |first6=Mahlet G. |last7=Vannucci |first7=Marina |last8=Gelman |first8=Andrew |last9=Veen |first9=Duco |last10=Willemsen |first10=Joukje |last11=Yau |first11=Christopher |title=Bayesian statistics and modelling|journal=Nature Reviews Methods Primers|date=January 14, 2021|volume=1|number=1|pages=1–26|doi=10.1038/s43586-020-00001-2|hdl=1874/415909 |s2cid=234108684 |url=https://osf.io/wdtmc/|hdl-access=free }}</ref> For reporting the results of a Bayesian statistical analysis, Bayesian analysis reporting guidelines (BARG) are provided in an open-access article by [[John K. Kruschke]].<ref name="Kruschke2021BARG">{{cite journal|last=Kruschke|first=J K|author-link=John K. Kruschke|title=Bayesian Analysis Reporting Guidelines|journal=Nature Human Behaviour|date=Aug 16, 2021|volume=5|issue=10 |pages=1282–1291|doi=10.1038/s41562-021-01177-7|pmid=34400814 |pmc=8526359 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)