Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernstein polynomial
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== The Bernstein basis polynomials have the following properties: * <math>\ b_{\nu, n}\!(x) \equiv 0\ ,</math> if <math>\ \nu < 0\ </math> or if <math>\ \nu > n ~.</math> * <math>\ b_{\nu, n}\!(x) \ge 0\ </math> for <math>\ x \in [0,\ 1] ~.</math> * <math>\ b_{\nu, n}\!\left( 1 - x \right) = b_{n - \nu, n}\!(x) ~.</math> * <math>\ b_{\nu, n}\!(0) = \delta_{\nu, 0}\ </math> and <math>\ b_{\nu, n}\!(1) = \delta_{\nu, n}\ </math> where <math>\ \delta_{i,j}\ </math> is the [[Kronecker delta]] function: <math>\ \delta_{ij} \equiv \begin{cases} 0 &\text{if } i \neq j\ , \\ 1 &\text{if } i=j ~. \end{cases}</math> * <math>\ b_{\nu, n}\!(x)\ </math> has a root with multiplicity <math>\ \nu\ </math> at point <math>\ x = 0\ </math> (note: when <math>\ \nu = 0\ ,</math> there is no root at {{math|0}}). * <math>\ b_{\nu, n}\!(x)\ </math> has a root with multiplicity <math>\ \left( n - \nu \right)\ </math> at point <math>\ x = 1\ </math> (note: if <math>\ \nu = n\ ,</math> there is no root at {{math|1}}). * The [[derivative]] can be written as a combination of two polynomials of lower degree: <math display="block">\ b_{\nu, n}'\!(x) = n \bigl[\ b_{\nu - 1, n - 1}\!(x)\ -\ b_{\nu, n - 1}\!(x)\ \bigr] ~.</math> * The {{mvar|k}}-th derivative at {{math|0}}: <math display="block">\ b_{\nu, n}^{(k)}\!(0)\ =\ \frac{n!}{(n - k)!} \binom{k}{\nu} (-1)^{\nu + k} ~.</math> * The {{mvar|k}}-th derivative at 1: <math display="block">\ b_{\nu, n}^{(k)}(1)\ =\ (-1)^k b_{n - \nu, n}^{(k)}(0) ~.</math> * The transformation of the Bernstein polynomial to monomials is <math display="block">\ b_{\nu,n}\!(x)\ =\ \binom{n}{\nu}\sum_{k=0}^{n-\nu} \binom{n-\nu}{k}(-1)^{n-\nu-k} x^{\nu+k}\ =\ \sum_{\ell=\nu}^n \binom{n}{\ell}\binom{\ell}{\nu}(-1)^{\ell-\nu}x^\ell\ ,</math> and by the [[Binomial transform|inverse binomial transformation]], the reverse transformation is<ref>{{cite arXiv |first=R.J. |last=Mathar |year=2018 |title=Orthogonal basis function over the unit circle with the minimax property |at=Appendix B |eprint=1802.09518 |class=math.NA }}</ref> <math display="block">\ x^k\ =\ \sum_{i=0}^{n-k} \frac{ \binom{n-k}{i} }{ \binom{n}{i} } b_{n-i,n}\!(x)\ =\ \frac{1}{\binom{n}{k}} \sum_{j=k}^n \binom{j}{k}b_{j,n}\!(x) ~.</math> * The indefinite [[integral]] is given by <math display="block">\ \int b_{\nu, n}\!(x)\ \operatorname{d} x = \frac{1}{n+1} \sum_{j=\nu+1}^{n+1} b_{j, n+1}\!(x) ~.</math> * The definite integral is constant for a given {{mvar|n}}: <math display="block">\ \int_0^1 b_{\nu, n}\!(x)\ \operatorname{d} x = \frac{1}{n+1} ~~</math> for all <math>~~ \nu = 0, 1,\ \dots\ , n ~.</math> * If <math>\ n \ne 0\ , ~</math> then <math>~~ b_{\nu, n}\!(x)\ </math> has a unique local maximum on the interval <math>\ [0,\, 1]\ </math> at <math>\ x = \frac{\nu}{n} ~.</math> This maximum takes the value <math display="block">\ \nu^\nu n^{-n} \left( n - \nu \right)^{n - \nu} {n \choose \nu} ~.</math> * The Bernstein basis polynomials of degree <math>\ n\ </math> form a [[partition of unity]]: <math display="block">\ \sum_{\nu = 0}^n b_{\nu, n}(x)\ =\ \sum_{\nu = 0}^n {n \choose \nu} x^\nu \left(1 - x\right)^{n - \nu}\ =\ \left(x + \left( 1 - x \right) \right)^n = 1 ~.</math> * By taking the first <math>x</math>-derivative of <math>\ (x + y)^n\ ,</math> treating <math>\ y\ </math> as constant, then substituting the value <math>\ y = 1-x\ ,</math> it can be shown that <math display="block">\ \sum_{\nu=0}^{n} \nu\ b_{\nu, n}\!(x) = n\ x ~.</math> * Similarly the second <math>\ x\ </math>-derivative of <math>\ (x+y)^n\ ,</math> with <math>\ y\ </math> then again substituted <math>\ y = 1-x\ ,</math> shows that <math display="block">\ \sum_{\nu=1}^{n} \nu \left( \nu-1 \right)\ b_{\nu, n}\!(x) = n\left( n-1 \right)\ x^2 ~.</math> * A Bernstein polynomial can always be written as a linear combination of polynomials of higher degree: <math display="block">\ b_{\nu, n - 1}\!(x)\ =\ \left( \frac{n - \nu}{n}\right)\ b_{\nu, n}\!(x)\ +\ \left( \frac{\nu + 1}{n}\right)\ b_{\nu + 1, n}\!(x) ~.</math> * The expansion of the [[Chebyshev polynomials|Chebyshev Polynomials of the First Kind]] into the Bernstein basis is<ref>{{cite journal |first1=Abedallah |last1=Rababah |year=2003 |title=Transformation of Chebyshev-Bernstein polynomial basis |journal=Computational Methods in Applied Mathematics |volume=3 |number=4 |pages=608β622 |s2cid=120938358 |doi=10.2478/cmam-2003-0038 |doi-access=free}}</ref> <math display="block">\ T_n\!(u)\ =\ (2n-1)!!\ \sum_{k=0}^n \frac{~ (-1)^{n-k}\ }{\ (2k-1)!!\ (2n-2k-1)!!\ }\ b_{k,n}\!(u) ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)