Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Borůvka's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other algorithms == Other algorithms for this problem include [[Prim's algorithm]] and [[Kruskal's algorithm]]. Fast parallel algorithms can be obtained by combining Prim's algorithm with Borůvka's.<ref>{{cite journal|last1=Bader|first1=David A.|last2=Cong|first2=Guojing|title=Fast shared-memory algorithms for computing the minimum spanning forest of sparse graphs|journal=Journal of Parallel and Distributed Computing|date=2006|volume=66|issue=11|pages=1366–1378|doi=10.1016/j.jpdc.2006.06.001|citeseerx=10.1.1.129.8991|s2cid=2004627}}</ref> A faster randomized minimum spanning tree algorithm based in part on Borůvka's algorithm due to Karger, Klein, and Tarjan runs in expected {{math|O(''E'')}} time.<ref>{{cite journal|last1=Karger|first1=David R.|last2=Klein|first2=Philip N.|last3=Tarjan|first3=Robert E.|title=A randomized linear-time algorithm to find minimum spanning trees|journal=Journal of the ACM|date=1995|volume=42|issue=2|pages=321–328|doi=10.1145/201019.201022|citeseerx=10.1.1.39.9012|s2cid=832583}}</ref> The best known (deterministic) minimum spanning tree algorithm by [[Bernard Chazelle]] is also based in part on Borůvka's and runs in {{math|O(''E'' α(''E'',''V''))}} time, where α is the [[Ackermann function#Inverse|inverse Ackermann function]].<ref>{{Cite journal|last=Chazelle|first=Bernard|title=A minimum spanning tree algorithm with inverse-Ackermann type complexity|journal=J. ACM|volume=47|year=2000|issue=6|pages=1028–1047|url=http://www.cs.princeton.edu/~chazelle/pubs/mst.pdf|doi=10.1145/355541.355562|citeseerx=10.1.1.115.2318|s2cid=6276962}}</ref> These randomized and deterministic algorithms combine steps of Borůvka's algorithm, reducing the number of components that remain to be connected, with steps of a different type that reduce the number of edges between pairs of components.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)