Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bounded variation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===BV functions of several variables=== Functions of bounded variation, BV [[function (mathematics)|functions]], are functions whose distributional [[directional derivative|derivative]] is a [[Wikt:finite|finite]]<ref>In this context, "finite" means that its value is never [[Infinity|infinite]], i.e. it is a [[finite measure]].</ref> [[Radon measure]]. More precisely: {{EquationRef|3|Definition 2.1.}} Let '''<math> \Omega </math>''' be an [[open subset]] of <math>\mathbb{R}^n</math>. A function '''<math> u </math>''' belonging to '''[[Lp space|<math>L^1(\Omega)</math>]]''' is said to be of '''bounded variation''' ('''BV function'''), and written :<math> u\in \operatorname\operatorname{BV}(\Omega)</math> if there exists a [[Finite measure|finite]] [[vector-valued function|vector]] [[Radon measure]] <math> Du\in\mathcal M(\Omega,\mathbb{R}^n)</math> such that the following equality holds :<math> \int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x)\,\mathrm{d}x = - \int_\Omega \langle\boldsymbol{\phi}, Du(x)\rangle \qquad \forall\boldsymbol{\phi}\in C_c^1(\Omega,\mathbb{R}^n) </math> that is, '''<math>u</math>''' defines a [[linear functional]] on the space <math> C_c^1(\Omega,\mathbb{R}^n)</math> of [[Smooth function|continuously differentiable]] [[Vector-valued function|vector functions]] <math> \boldsymbol{\phi} </math> of [[support (mathematics)#Compact support|compact support]] contained in '''<math> \Omega </math>''': the vector [[measure (mathematics)|measure]] '''<math>Du</math>''' represents therefore the [[Distribution (mathematics)#Definitions of test functions and distributions|distributional]] or [[weak derivative|weak]] [[gradient]] of '''<math>u</math>'''. BV can be defined equivalently in the following way. {{EquationRef|4|Definition 2.2.}} Given a function '''<math>u</math>''' belonging to '''<math>L^1(\Omega)</math>''', the '''total variation of <math>u</math>'''<ref name="Tvar">See the entry "[[Total variation]]" for further details and more information.</ref> in <math>\Omega</math> is defined as :<math> V(u,\Omega):=\sup\left\{\int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x) \, \mathrm{d}x : \boldsymbol{\phi} \in C_c^1(\Omega,\mathbb{R}^n),\ \Vert\boldsymbol{\phi}\Vert_{L^\infty(\Omega)}\le 1\right\}</math> where <math> \Vert\;\Vert_{L^\infty(\Omega)}</math> is the [[essential supremum]] [[Norm (mathematics)|norm]]. Sometimes, especially in the theory of [[Caccioppoli set]]s, the following notation is used :<math>\int_\Omega\vert D u\vert = V(u,\Omega)</math> in order to emphasize that <math>V(u,\Omega)</math> is the total variation of the [[Distribution (mathematics)#Definitions of test functions and distributions|distributional]] / [[weak derivative|weak]] [[gradient]] of '''<math>u</math>'''. This notation reminds also that if '''<math>u</math>''' is of class '''<math>C^1</math>''' (i.e. a [[continuous function|continuous]] and [[differentiable function]] having [[continuous function|continuous]] [[derivative]]s) then its [[Total variation|variation]] is exactly the [[Integral (measure theory)|integral]] of the [[absolute value]] of its [[gradient]]. The space of '''functions of bounded variation''' ('''BV functions''') can then be defined as :<math> \operatorname\operatorname{BV}(\Omega)=\{ u\in L^1(\Omega)\colon V(u,\Omega)<+\infty\}</math> The two definitions are equivalent since if <math>V(u,\Omega)<+\infty </math> then :<math>\left|\int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x) \, \mathrm{d}x \right |\leq V(u,\Omega)\Vert\boldsymbol{\phi}\Vert_{L^\infty(\Omega)} \qquad \forall \boldsymbol{\phi}\in C_c^1(\Omega,\mathbb{R}^n) </math> therefore <math display="inline"> \displaystyle \boldsymbol{\phi}\mapsto\,\int_\Omega u(x)\operatorname{div}\boldsymbol{\phi}(x) \, dx</math> defines a [[continuous linear functional]] on the space <math>C_c^1(\Omega,\mathbb{R}^n)</math>. Since <math>C_c^1(\Omega,\mathbb{R}^n) \subset C^0(\Omega,\mathbb{R}^n)</math> as a [[linear subspace]], this [[continuous linear functional]] can be extended [[continuous function|continuously]] and [[linearity|linearly]] to the whole <math>C^0(\Omega,\mathbb{R}^n)</math> by the [[Hahn–Banach theorem]]. Hence the continuous linear functional defines a [[Radon measure#Duality|Radon measure]] by the [[Riesz–Markov–Kakutani representation theorem]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)