Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brianchon's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==In the affine plane== Brianchon's theorem is true in both the [[Euclidean plane|affine plane]] and the [[real projective plane]]. However, its statement in the affine plane is in a sense less informative and more complicated than that in the [[projective plane]]. Consider, for example, five tangent lines to a [[parabola]]. These may be considered sides of a hexagon whose sixth side is the [[line at infinity]], but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line ''parallel to'' one of the five tangent lines. Brianchon's theorem stated only for the affine plane would therefore have to be stated differently in such a situation. The projective dual of Brianchon's theorem has exceptions in the affine plane but not in the projective plane.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)