Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical commutation relation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == It can be shown that <math display="block">[F(\vec{x}),p_i] = i\hbar\frac{\partial F(\vec{x})}{\partial x_i}; \qquad [x_i, F(\vec{p})] = i\hbar\frac{\partial F(\vec{p})}{\partial p_i}.</math> Using <math>C_{n+1}^{k} = C_{n}^{k} + C_{n}^{k-1}</math>, it can be shown that by [[mathematical induction]] <math display="block">\left[\hat{x}^n,\hat{p}^m\right] = \sum_{k=1}^{\min\left(m,n\right)}{ \frac{-\left(-i \hbar\right)^k n!m!}{k!\left(n-k\right)!\left(m-k\right)!} \hat{x}^{n-k} \hat{p}^{m-k}} = \sum_{k=1}^{\min\left(m,n\right)}{ \frac{\left(i \hbar\right)^k n!m!}{k!\left(n-k\right)!\left(m-k\right)!} \hat{p}^{m-k}\hat{x}^{n-k}} ,</math> generally known as McCoy's formula.<ref>McCoy, N. H. (1929), "On commutation formulas in the algebra of quantum mechanics", ''Transactions of the American Mathematical Society'' ''31'' (4), 793-806 [https://pdfs.semanticscholar.org/1bc1/688c10bbb6d6630e647f675695a822f2a380.pdf online]</ref> In addition, the simple formula <math display="block">[x,p] = i\hbar \, \mathbb{I} ~,</math> valid for the [[Canonical quantization|quantization]] of the simplest classical system, can be generalized to the case of an arbitrary [[Lagrangian (field theory)|Lagrangian]] <math>{\mathcal L}</math>.<ref name="town">{{cite book |first=J. S. |last=Townsend |title=A Modern Approach to Quantum Mechanics |url=https://archive.org/details/modernapproachto0000town |url-access=registration |publisher=University Science Books |location=Sausalito, CA |year=2000 |isbn=1-891389-13-0 }}</ref> We identify '''canonical coordinates''' (such as {{mvar|x}} in the example above, or a field {{math|Φ(''x'')}} in the case of [[quantum field theory]]) and '''canonical momenta''' {{math|π<sub>''x''</sub>}} (in the example above it is {{mvar|p}}, or more generally, some functions involving the [[derivative]]s of the canonical coordinates with respect to time): <math display="block">\pi_i \ \stackrel{\mathrm{def}}{=}\ \frac{\partial {\mathcal L}}{\partial(\partial x_i / \partial t)}.</math> This definition of the canonical momentum ensures that one of the [[Euler–Lagrange equation]]s has the form <math display="block">\frac{\partial}{\partial t} \pi_i = \frac{\partial {\mathcal L}}{\partial x_i}.</math> The canonical commutation relations then amount to <math display="block">[x_i,\pi_j] = i\hbar\delta_{ij} \, </math> where {{math|''δ''<sub>''ij''</sub>}} is the [[Kronecker delta]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)