Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Symplectic condition === Sometimes the Hamiltonian relations are represented as: <math display="block">\dot{\eta}= J \nabla_\eta H </math> Where <math display="inline">J := \begin{pmatrix} 0 & I_n \\ -I_n & 0 \\ \end{pmatrix},</math> and <math display="inline">\mathbf{\eta} = \begin{bmatrix} q_1\\ \vdots \\ q_n\\ p_1\\ \vdots\\ p_n\\ \end{bmatrix} </math>. Similarly, let <math display="inline">\mathbf{\varepsilon} = \begin{bmatrix} Q_1\\ \vdots \\ Q_n\\ P_1\\ \vdots\\ P_n\\ \end{bmatrix} </math>. From the relation of partial derivatives, converting the <math>\dot{\eta}= J \nabla_\eta H </math> relation in terms of partial derivatives with new variables gives <math>\dot{\eta}=J ( M^T \nabla_\varepsilon H) </math> where <math display="inline">M := \frac{\partial (\mathbf{Q}, \mathbf{P})}{\partial (\mathbf{q}, \mathbf{p})}</math>. Similarly for <math display="inline">\dot{\varepsilon} </math>, <math display="block">\dot{\varepsilon}=M\dot{\eta} =M J M^T \nabla_\varepsilon H </math> Due to form of the Hamiltonian equations for <math display="inline">\dot{\varepsilon} </math>, <math display="block">\dot{\varepsilon}=J \nabla_\varepsilon K = J \nabla_\varepsilon H </math> where <math display="inline">\nabla_\varepsilon K = \nabla_\varepsilon H </math> can be used due to the form of Kamiltonian. Equating the two equations gives the symplectic condition as:<ref> {{Harvnb|Goldstein|Poole|Safko|2007|p=381-384}}</ref> <math display="block">M J M^T = J </math> The left hand side of the above is called the Poisson matrix of <math>\varepsilon </math>, denoted as <math display="inline">\mathcal P(\varepsilon) = MJM^T </math>. Similarly, a Lagrange matrix of <math>\eta </math> can be constructed as <math display="inline">\mathcal L(\eta) = M^TJM </math>.<ref name=":0">{{Harvnb|Giacaglia|1972|p=8-9}}</ref> It can be shown that the symplectic condition is also equivalent to <math display="inline">M^T J M = J </math> by using the <math display="inline">J^{-1}=-J </math> property. The set of all matrices <math display="inline">M </math> which satisfy symplectic conditions form a [[symplectic group]]. The symplectic conditions are equivalent with indirect conditions as they both lead to the equation <math display="inline">\dot{\varepsilon}= J \nabla_\varepsilon H </math>, which is used in both of the derivations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)