Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carmichael number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Properties == === Factorizations === Carmichael numbers have at least three positive prime factors. The first Carmichael numbers with <math>k = 3, 4, 5, \ldots</math> prime factors are {{OEIS|id=A006931}}: {| class="wikitable" |- ! ''k'' !! |- | 3 || <math>561 = 3 \cdot 11 \cdot 17\,</math> |- | 4 || <math>41041 = 7 \cdot 11 \cdot 13 \cdot 41\,</math> |- | 5 || <math>825265 = 5 \cdot 7 \cdot 17 \cdot 19 \cdot 73\,</math> |- | 6 || <math>321197185 = 5 \cdot 19 \cdot 23 \cdot 29 \cdot 37 \cdot 137\,</math> |- | 7 || <math>5394826801 = 7 \cdot 13 \cdot 17 \cdot 23 \cdot 31 \cdot 67 \cdot 73\,</math> |- | 8 || <math>232250619601 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 31 \cdot 37 \cdot 73 \cdot 163\,</math> |- | 9 || <math>9746347772161 = 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 31 \cdot 37 \cdot 41 \cdot 641\,</math> |} The first Carmichael numbers with 4 prime factors are {{OEIS|id=A074379}}: {| class="wikitable" |- ! ''i'' !! |- | 1 || <math>41041 = 7 \cdot 11 \cdot 13 \cdot 41\,</math> |- | 2 || <math>62745 = 3 \cdot 5 \cdot 47 \cdot 89\,</math> |- | 3 || <math>63973 = 7 \cdot 13 \cdot 19 \cdot 37\,</math> |- | 4 || <math>75361 = 11 \cdot 13 \cdot 17 \cdot 31\,</math> |- | 5 || <math>101101 = 7 \cdot 11 \cdot 13 \cdot 101\,</math> |- | 6 || <math>126217 = 7 \cdot 13 \cdot 19 \cdot 73\,</math> |- | 7 || <math>172081 = 7 \cdot 13 \cdot 31 \cdot 61\,</math> |- | 8 || <math>188461 = 7 \cdot 13 \cdot 19 \cdot 109\,</math> |- | 9 || <math>278545 = 5 \cdot 17 \cdot 29 \cdot 113\,</math> |- | 10 || <math>340561 = 13 \cdot 17 \cdot 23 \cdot 67\,</math> |} The second Carmichael number (1105) can be expressed as the sum of two squares in more ways than any smaller number. The third Carmichael number (1729) is the [[1729 (number)|Hardy-Ramanujan Number]]: the smallest number that can be expressed as the [[sum of two cubes]] (of positive numbers) in two different ways. === Distribution === Let <math>C(X)</math> denote the number of Carmichael numbers less than or equal to {{tmath|1= X }}. The distribution of Carmichael numbers by powers of 10 {{OEIS|id=A055553}}:<ref name="Pinch2007"/> {| class="wikitable" style="margin:1em auto;" |- ! <math>n</math> | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |- ! <math>C(10^n)</math> | 0 | 0 | 1 | 7 | 16 | 43 | 105 | 255 | 646 | 1547 | 3605 | 8241 | 19279 | 44706 | 105212 | 246683 | 585355 | 1401644 | 3381806 | 8220777 | 20138200 |} In 1953, [[Walter Knödel|Knödel]] proved the [[Upper and lower bounds|upper bound]]: : <math>C(X) < X \exp\left({-k_1 \left( \log X \log \log X\right)^\frac{1}{2}}\right)</math> for some constant {{tmath|1= k_1 }}. In 1956, Erdős improved the bound to : <math>C(X) < X \exp\left(\frac{-k_2 \log X \log \log \log X}{\log \log X}\right)</math> for some constant {{tmath|1= k_2 }}.<ref name="Erdős1956">{{cite journal |author=Erdős, P. |year=2022 |title=On pseudoprimes and Carmichael numbers |journal=Publ. Math. Debrecen |volume=4 |issue=3–4 |pages=201–206 |doi=10.5486/PMD.1956.4.3-4.16 |url=http://www.renyi.hu/~p_erdos/1956-10.pdf |archive-url=https://web.archive.org/web/20110611160632/http://www.renyi.hu/~p_erdos/1956-10.pdf |archive-date=2011-06-11 |url-status=live |mr=79031 |s2cid=253789521 |author-link=Paul Erdős }}</ref> He further gave a [[heuristic argument]] suggesting that this upper bound should be close to the true growth rate of {{tmath|1= C(X) }}. In the other direction, [[W. R. (Red) Alford|Alford]], [[Andrew Granville|Granville]] and [[Carl Pomerance|Pomerance]] proved in 1994<ref name="Alford-1994" /> that for [[Eventually (mathematics)|sufficiently large]] ''X'', : <math>C(X) > X^\frac{2}{7}.</math> In 2005, this bound was further improved by [[Glyn Harman|Harman]]<ref>{{cite journal |author=Glyn Harman |title=On the number of Carmichael numbers up to ''x'' |journal=Bulletin of the London Mathematical Society |volume=37 |issue=5 |year=2005 |pages=641–650 |doi=10.1112/S0024609305004686|s2cid=124405969 }}</ref> to : <math>C(X) > X^{0.332}</math> who subsequently improved the exponent to {{tmath|1= 0.7039 \cdot 0.4736 = 0.33336704 > 1/3 }}.<ref> {{cite journal |last=Harman |first=Glyn |date=2008 |title=Watt's mean value theorem and Carmichael numbers |doi=10.1142/S1793042108001316 |mr=2404800 |journal=International Journal of Number Theory |volume=4 |issue=2 |pages=241–248 }}</ref> Regarding the asymptotic distribution of Carmichael numbers, there have been several conjectures. In 1956, Erdős<ref name="Erdős1956"/> conjectured that there were <math>X^{1-o(1)}</math> Carmichael numbers for ''X'' sufficiently large. In 1981, Pomerance<ref name="Pomerance1981">{{cite journal |author=Pomerance, C. |year=1981 |title=On the distribution of pseudoprimes |journal=Math. Comp. |volume=37 |issue=156 |pages=587–593|jstor=2007448 |doi=10.1090/s0025-5718-1981-0628717-0|author-link=Carl Pomerance |doi-access=free }}</ref> sharpened Erdős' heuristic arguments to conjecture that there are at least : <math> X \cdot L(X)^{-1 + o(1)} </math> Carmichael numbers up to {{tmath|1= X }}, where {{tmath|1= L(x) = \exp{ \left( \frac{\log x \log\log\log x} {\log\log x} \right) } }}. However, inside current computational ranges (such as the count of Carmichael numbers performed by Goutier{{OEIS|id=A055553}} up to 10<sup>22</sup>), these conjectures are not yet borne out by the data; empirically, the exponent is <math> C(X) \approx X^{0.35}</math> for the highest available count (C(X)=49679870 for X= 10<sup>22</sup>). <!-- Too indirect and long? -->In 2021, [[Daniel Larsen (mathematician)|Daniel Larsen]] proved an analogue of [[Bertrand's postulate]] for Carmichael numbers first conjectured by Alford, Granville, and Pomerance in 1994.<ref name="Cepelewicz-2022" /><ref>{{cite journal |author=Larsen, Daniel |date=20 July 2022 |title=Bertrand's Postulate for Carmichael Numbers |url=https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnac203/6647493 |journal=International Mathematics Research Notices |volume=2023 |issue=15 |pages=13072–13098 |arxiv=2111.06963 |doi=10.1093/imrn/rnac203}}</ref> Using techniques developed by [[Yitang Zhang]] and [[James Maynard (mathematician)|James Maynard]] to establish results concerning [[Twin prime conjecture|small gaps between primes]], his work yielded the much stronger statement that, for any <math>\delta>0</math> and sufficiently large <math>x</math> in terms of <math>\delta</math>, there will always be at least : <math>\exp{\left(\frac{\log{x}}{(\log \log{x})^{2+\delta}}\right)} </math> Carmichael numbers between <math>x</math> and : <math>x+\frac{x}{(\log{x})^{\frac{1}{2+\delta}}}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)