Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cauchy–Binet formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== A simple proof == The following simple proof relies on two facts that can be proven in several different ways:<ref>{{cite book |last1=Tao |first1=Terence |author-link=Terence Tao |title=Topics in random matrix theory |date=2012 |publisher=American Mathematical Society |url=https://terrytao.files.wordpress.com/2011/08/matrix-book.pdf |location=Providence, RI |isbn=978-0-8218-7430-1 |doi=10.1090/gsm/132 |series=Graduate Studies in Mathematics |volume=132 |page=253}}</ref> # For any <math>1 \leq k\leq n</math> the coefficient of <math>z^{n-k}</math> in the polynomial <math>\det(zI_n+X)</math> is the sum of the <math>k\times k</math> principal minors of <math>X</math>. # If <math>m \leq n</math> and <math>A</math> is an <math>m\times n</math> matrix and <math>B</math> an <math>n\times m</math> matrix, then ::: <math>\det(zI_n+BA)=z^{n-m}\det(zI_m+AB)</math>. Now, if we compare the coefficient of <math>z^{n-m}</math> in the equation <math>\det(zI_n+BA)=z^{n-m}\det(zI_m+AB)</math>, the left hand side will give the sum of the principal minors of <math>BA</math> while the right hand side will give the constant term of <math>\det(zI_m+AB)</math>, which is simply <math>\det(AB)</math>, which is what the Cauchy–Binet formula states, i.e. : <math> \begin{align} &\det(AB)= \sum_{S\in\tbinom{[n]}m} \det((BA)_{S,S})=\sum_{S\in\tbinom{[n]}m} \det(B_{S,[m]}) \det(A_{[m],S}) \\[5pt] = {} & \sum_{S\in\tbinom{[n]}m}\det(A_{[m],S}) \det(B_{S,[m]}). \end{align} </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)