Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Center (group theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== * The center of an [[abelian group]], {{math|''G''}}, is all of {{math|''G''}}. * The center of the [[Heisenberg group]], {{math|''H''}}, is the set of matrices of the form: <math display="block"> \begin{pmatrix} 1 & 0 & z\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}</math> * The center of a [[nonabelian group|nonabelian]] [[simple group]] is trivial. * The center of the [[dihedral group]], {{math|D{{sub|''n''}}}}, is trivial for odd {{math|''n'' β₯ 3}}. For even {{math|''n'' β₯ 4}}, the center consists of the identity element together with the 180Β° rotation of the [[polygon]]. * The center of the [[quaternion group]], {{math|1=Q{{sub|8}} = {1, β1, i, βi, j, βj, k, βk} }}, is {{math|{1, β1}<nowiki/>}}. * The center of the [[symmetric group]], {{math|''S''{{sub|''n''}}}}, is trivial for {{math|''n'' β₯ 3}}. * The center of the [[alternating group]], {{math|''A''{{sub|''n''}}}}, is trivial for {{math|''n'' β₯ 4}}. * The center of the [[general linear group]] over a [[Field (mathematics)|field]] {{math|F}}, {{math|GL{{sub|''n''}}(F)}}, is the collection of [[diagonal matrix|scalar matrices]], {{math|{{mset| sI<sub>''n''</sub> β£ s β F \ {0} }}}}. * The center of the [[orthogonal group]], {{math|O<sub>''n''</sub>(F)}} is {{math|{I<sub>''n''</sub>, βI<sub>''n''</sub>}<nowiki/>}}. * The center of the [[special orthogonal group]], {{math|SO(''n'')}} is the whole group when {{math|1=''n'' = 2}}, and otherwise {{math|{{mset|I<sub>''n''</sub>, βI<sub>''n''</sub>}}}} when ''n'' is even, and trivial when ''n'' is odd. * The center of the [[unitary group]], <math>U(n)</math> is <math>\left\{ e^{i\theta} \cdot I_n \mid \theta \in [0, 2\pi) \right\}</math>. * The center of the [[special unitary group]], <math>\operatorname{SU}(n)</math> is <math display="inline">\left\lbrace e^{i\theta} \cdot I_n \mid \theta = \frac{2k\pi}{n}, k = 0, 1, \dots, n-1 \right\rbrace </math>. * The center of the multiplicative group of non-zero [[quaternion]]s is the multiplicative group of non-zero [[real number]]s. * Using the [[class equation]], one can prove that the center of any non-trivial [[finite group|finite]] [[p-group]] is non-trivial. * If the [[quotient group]] {{math|''G''/Z(''G'')}} is [[cyclic group|cyclic]], {{math|''G''}} is [[abelian group|abelian]] (and hence {{math|1=''G'' = Z(''G'')}}, so {{math|''G''/Z(''G'')}} is trivial). * The center of the [[Rubik's Cube group]] consists of two elements β the identity (i.e. the solved state) and the [[superflip]]. The center of the [[Pocket Cube]] group is trivial. * The center of the [[Megaminx]] group has order 2, and the center of the [[Kilominx]] group is trivial.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)