Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Centralizer and normalizer
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Example== Consider the group :<math>G = S_3 = \{[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\}</math> (the symmetric group of permutations of 3 elements). Take a subset <math>H</math> of the group <math>G</math>: :<math>H = \{[1, 2, 3], [1, 3, 2]\}. </math> Note that <math>[1, 2, 3]</math> is the identity permutation in <math>G</math> and retains the order of each element and <math>[1, 3, 2]</math> is the permutation that fixes the first element and swaps the second and third element. The normalizer of <math>H</math> with respect to the group <math>G</math> are all elements of <math>G</math> that yield the set <math>H</math> (potentially permuted) when the element conjugates <math>H</math>. Working out the example for each element of <math>G</math>: :<math>[1, 2, 3]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [1, 3, 2]\} = H</math>; therefore <math>[1, 2, 3]</math> is in the normalizer <math>N_G(H)</math>. :<math>[1, 3, 2]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [1, 3, 2]\} = H</math>; therefore <math>[1, 3, 2]</math> is in the normalizer <math>N_G(H)</math>. :<math>[2, 1, 3]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [3, 2, 1]\} \neq H</math>; therefore <math>[2, 1, 3]</math> is not in the normalizer <math>N_G(H)</math>. :<math>[2, 3, 1]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [2, 1, 3]\} \neq H</math>; therefore <math>[2, 3, 1]</math> is not in the normalizer <math>N_G(H)</math>. :<math>[3, 1, 2]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [3, 2, 1]\} \neq H</math>; therefore <math>[3, 1, 2]</math> is not in the normalizer <math>N_G(H)</math>. :<math>[3, 2, 1]</math> when applied to <math>H</math>: <math>\{[1, 2, 3], [2, 1, 3]\} \neq H</math>; therefore <math>[3, 2, 1]</math> is not in the normalizer <math>N_G(H)</math>. Therefore, the normalizer <math>N_G(H)</math> of <math>H</math> in <math>G</math> is <math>\{[1, 2, 3], [1, 3, 2]\}</math> since both these group elements preserve the set <math>H</math> under conjugation. The centralizer of the group <math>G</math> is the set of elements that leave each element of <math>H</math> unchanged by conjugation; that is, the set of elements that commutes with every element in <math>H</math>. It's clear in this example that the only such element in S<sub>3</sub> is <math>H</math> itself ([1, 2, 3], [1, 3, 2]).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)