Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Chebyshev polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Commuting polynomials definition=== Chebyshev polynomials can also be characterized by the following theorem:<ref>{{cite journal|first=J. F. |last=Ritt |author-link=Joseph Ritt |doi=10.1090/S0002-9947-1922-1501189-9 |title=Prime and Composite Polynomials |journal=Trans. Amer. Math. Soc. |year=1922|volume=23 |pages=51β66 | url=https://www.ams.org/journals/tran/1922-023-01/S0002-9947-1922-1501189-9 |doi-access=free}}</ref> If <math> F_n(x)</math> is a family of monic polynomials with coefficients in a field of characteristic <math>0</math> such that <math> \deg F_n(x) = n</math> and <math> F_m(F_n(x)) = F_n(F_m(x))</math> for all <math>m</math> and <math> n</math>, then, up to a simple change of variables, either <math> F_n(x) = x^n</math> for all <math> n</math> or <math>F_n(x) = 2\cdot T_n(x/2)</math> for all <math> n</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)