Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Classifying space
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== This still leaves the question of doing effective calculations with ''BG''; for example, the theory of [[characteristic class]]es is essentially the same as computing the [[cohomology group]]s of ''BG'', at least within the restrictive terms of homotopy theory, for interesting groups ''G'' such as [[Lie group]]s ([[H. Cartan's theorem]]).{{clarify|date=September 2014}}<!-- how BG makes sense for a non-Lie group? --> As was shown by the [[Bott periodicity theorem]], the [[homotopy group]]s of ''BG'' are also of fundamental interest. An example of a classifying space is that when ''G'' is cyclic of order two; then ''BG'' is [[real projective space]] of infinite dimension, corresponding to the observation that ''EG'' can be taken as the contractible space resulting from removing the origin in an infinite-dimensional [[Hilbert space]], with ''G'' acting via ''v'' going to −''v'', and allowing for [[homotopy equivalence]] in choosing ''BG''. This example shows that classifying spaces may be complicated. In relation with [[differential geometry]] ([[Chern–Weil theory]]) and the theory of [[Grassmannian]]s, a much more hands-on approach to the theory is possible for cases such as the [[unitary group]]s that are of greatest interest. The construction of the [[Thom complex]] ''MG'' showed that the spaces ''BG'' were also implicated in [[cobordism theory]], so that they assumed a central place in geometric considerations coming out of [[algebraic topology]]. Since [[group cohomology]] can (in many cases) be defined by the use of classifying spaces, they can also be seen as foundational in much [[homological algebra]]. Generalizations include those for classifying [[foliation]]s, and the [[classifying topos]]es for logical theories of the predicate calculus in [[intuitionistic logic]] that take the place of a 'space of models'.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)