Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Clique (graph theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== The word "clique", in its graph-theoretic usage, arose from the work of {{harvtxt|Luce|Perry|1949}}, who used complete subgraphs to model [[clique]]s (groups of people who all know each other) in [[social network]]s. The same definition was used by {{harvtxt|Festinger|1949}} in an article using less technical terms. Both works deal with uncovering cliques in a social network using matrices. For continued efforts to model social cliques graph-theoretically, see e.g. {{harvtxt|Alba|1973}}, {{harvtxt|Peay|1974}}, and {{harvtxt|Doreian|Woodard|1994}}. Many different problems from [[bioinformatics]] have been modeled using cliques. For instance, {{harvtxt|Ben-Dor|Shamir|Yakhini|1999}} model the problem of clustering [[gene expression]] data as one of finding the minimum number of changes needed to transform a graph describing the data into a graph formed as the disjoint union of cliques; {{harvtxt|Tanay|Sharan|Shamir|2002}} discuss a similar [[biclustering]] problem for expression data in which the clusters are required to be cliques. {{harvtxt|Sugihara|1984}} uses cliques to model [[ecological niche]]s in [[food chain|food webs]]. {{harvtxt|Day|Sankoff|1986}} describe the problem of inferring [[evolutionary tree]]s as one of finding maximum cliques in a graph that has as its vertices characteristics of the species, where two vertices share an edge if there exists a [[perfect phylogeny]] combining those two characters. {{harvtxt|Samudrala|Moult|1998}} model [[protein structure prediction]] as a problem of finding cliques in a graph whose vertices represent positions of subunits of the protein. And by searching for cliques in a [[protein–protein interaction]] network, {{harvtxt|Spirin|Mirny|2003}} found clusters of proteins that interact closely with each other and have few interactions with proteins outside the cluster. [[Power graph analysis]] is a method for simplifying complex biological networks by finding cliques and related structures in these networks. In [[electrical engineering]], {{harvtxt|Prihar|1956}} uses cliques to analyze communications networks, and {{harvtxt|Paull|Unger|1959}} use them to design efficient circuits for computing partially specified Boolean functions. Cliques have also been used in [[automatic test pattern generation]]: a large clique in an incompatibility graph of possible faults provides a lower bound on the size of a test set.<ref>{{harvtxt|Hamzaoglu|Patel|1998}}.</ref> {{harvtxt|Cong|Smith|1993}} describe an application of cliques in finding a hierarchical partition of an electronic circuit into smaller subunits. In [[chemistry]], {{harvtxt|Rhodes|Willett|Calvet|Dunbar|2003}} use cliques to describe chemicals in a [[chemical database]] that have a high degree of similarity with a target structure. {{harvtxt|Kuhl|Crippen|Friesen|1983}} use cliques to model the positions in which two chemicals will bind to each other.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)