Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Complete Heyting algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Literature == * [[P. T. Johnstone]], ''Stone Spaces'', Cambridge Studies in Advanced Mathematics 3, [[Cambridge University Press]], Cambridge, 1982. ({{ISBN|0-521-23893-5}}) : ''Still a great resource on locales and complete Heyting algebras.'' * G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and [[D. S. Scott]], ''Continuous Lattices and Domains'', In ''Encyclopedia of Mathematics and its Applications'', Vol. 93, Cambridge University Press, 2003. {{ISBN|0-521-80338-1}} : ''Includes the characterization in terms of meet continuity.'' * Francis Borceux: ''Handbook of Categorical Algebra III'', volume 52 of ''Encyclopedia of Mathematics and its Applications''. Cambridge University Press, 1994. : ''Surprisingly extensive resource on locales and Heyting algebras. Takes a more categorical viewpoint.'' * [[Steven Vickers]], ''Topology via logic'', Cambridge University Press, 1989, {{ISBN|0-521-36062-5}}. * {{cite book | zbl=1034.18001 | editor1-last=Pedicchio | editor1-first=Maria Cristina | editor2-last=Tholen | editor2-first=Walter | title=Categorical foundations. Special topics in order, topology, algebra, and sheaf theory | series=Encyclopedia of Mathematics and Its Applications | volume=97 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2004 | isbn=0-521-83414-7 }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)