Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Constraint satisfaction problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Computational Complexity=== CSPs are also studied in [[computational complexity theory]], [[finite model theory]] and [[universal algebra]]. It turned out that questions about the complexity of CSPs translate into important universal-algebraic questions about underlying algebras. This approach is known as the ''algebraic approach'' to CSPs.<ref>{{Cite journal |last1=Barto |first1=Libor |last2=Brady |first2=Zarathustra |last3=Bulatov |first3=Andrei |last4=Kozik |first4=Marcin |last5=Zhuk |first5=Dmitriy |date=2024-05-15 |title=Unifying the Three Algebraic Approaches to the CSP via Minimal Taylor Algebras |journal=Theoretics |volume=3 |pages=11361 |doi=10.46298/theoretics.24.14 |arxiv=2104.11808 |issn=2751-4838}}</ref> Since every computational decision problem is [[Polynomial-time reduction|polynomial-time equivalent]] to a CSP with an infinite template,<ref>{{Cite book |last1=Bodirsky |first1=Manuel |last2=Grohe |first2=Martin |chapter=Non-dichotomies in Constraint Satisfaction Complexity |series=Lecture Notes in Computer Science |date=2008 |volume=5126 |editor-last=Aceto |editor-first=Luca |editor2-last=Damgård |editor2-first=Ivan |editor3-last=Goldberg |editor3-first=Leslie Ann |editor4-last=Halldórsson |editor4-first=Magnús M. |editor5-last=Ingólfsdóttir |editor5-first=Anna |editor6-last=Walukiewicz |editor6-first=Igor |title=Automata, Languages and Programming |chapter-url=https://link.springer.com/chapter/10.1007/978-3-540-70583-3_16 |language=en |location=Berlin, Heidelberg |publisher=Springer |pages=184–196 |doi=10.1007/978-3-540-70583-3_16 |isbn=978-3-540-70583-3}}</ref> general CSPs can have arbitrary complexity. In particular, there are also CSPs within the class of [[NP-intermediate]] problems, whose existence was demonstrated by [[NP-intermediate|Ladner]], under the assumption that [[P versus NP problem|P ≠ NP]]. However, a large class of CSPs arising from natural applications satisfy a complexity dichotomy, meaning that every CSP within that class is either in [[P (complexity)|P]] or [[NP-complete]]. These CSPs thus provide one of the largest known subsets of [[NP (complexity)|NP]] which avoids [[NP-intermediate]] problems. A complexity dichotomy was first proven by [[Schaefer's dichotomy theorem|Schaefer]] for Boolean CSPs, i.e. CSPs over a 2-element domain and where all the available relations are [[Boolean operator (Boolean algebra)|Boolean operator]]s. This result has been generalized for various classes of CSPs, most notably for all CSPs over finite domains. This ''finite-domain dichotomy conjecture'' was first formulated by Tomás Feder and Moshe Vardi,<ref>{{Cite journal |last1=Feder |first1=Tomás |last2=Vardi |first2=Moshe Y. |author-link2=Moshe Vardi |date=1998 |title=The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory |url=http://epubs.siam.org/doi/10.1137/S0097539794266766 |journal=SIAM Journal on Computing |language=en |volume=28 |issue=1 |pages=57–104 |doi=10.1137/S0097539794266766 |issn=0097-5397}}</ref> and finally proven independently by Andrei Bulatov<ref>{{Cite book |last1=Bulatov |first1=Andrei |title=Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017 |publisher=IEEE Computer Society |year=2017 |pages=319–330 |contribution=A Dichotomy Theorem for Nonuniform CSPs |doi=10.1109/FOCS.2017.37|arxiv=1703.03021 |isbn=978-1-5386-3464-6 }}</ref> and Dmitriy Zhuk in 2017.<ref>{{Cite journal |last1=Zhuk |first1=Dmitriy |year=2020 |title=A Proof of the CSP Dichotomy Conjecture |journal=Journal of the ACM |volume=67 |pages=1–78 |arxiv=1704.01914 |doi=10.1145/3402029 |number=5}}</ref> Other classes for which a complexity dichotomy has been confirmed are * all [[First-order logic|first-order]] [[Reduct|reducts]] of <math>(\mathbb{Q},<)</math>,<ref>{{Cite journal |last1=Bodirsky |first1=Manuel |last2=Kára |first2=Jan |date=2010-02-08 |title=The complexity of temporal constraint satisfaction problems |url=https://doi.org/10.1145/1667053.1667058 |journal=J. ACM |volume=57 |issue=2 |pages=9:1–9:41 |doi=10.1145/1667053.1667058 |issn=0004-5411}}</ref> * all first-order reducts of the [[Rado graph|countable random graph]],<ref>{{Cite book |last1=Bodirsky |first1=Manuel |title=Proceedings of the 43rd Annual Symposium on Theory of Computing (STOC '11) |title-link=Symposium on Theory of Computing |last2=Pinsker |first2=Michael |publisher=[[Association for Computing Machinery]] |year=2011 |isbn=978-1-4503-0691-1 |pages=655–664 |contribution=Schaefer's theorem for graphs |doi=10.1145/1993636.1993724 |arxiv=1011.2894 |s2cid=47097319}}</ref> * all first-order reducts of the [[model companion]] of the class of all C-relations,<ref>{{Cite journal |last1=Bodirsky |first1=Manuel |last2=Jonsson |first2=Peter |last3=Pham |first3=Trung Van |date=2017-08-02 |title=The Complexity of Phylogeny Constraint Satisfaction Problems |url=https://doi.org/10.1145/3105907 |journal=ACM Trans. Comput. Logic |volume=18 |issue=3 |pages=23:1–23:42 |doi=10.1145/3105907 |arxiv=1503.07310 |issn=1529-3785}}</ref> * all first-order reducts of the universal homogenous [[Partially ordered set|poset]],<ref>{{Cite book |last1=Kompatscher |first1=Michael |last2=Pham |first2=Trung Van |date=2017 |chapter= A Complexity Dichotomy for Poset Constraint Satisfaction|title=34th Symposium on Theoretical Aspects of Computer Science (STACS 2017) |series=Leibniz International Proceedings in Informatics |volume=66 |pages=47:1–47:12 |language=en |publisher=Schloss Dagstuhl – Leibniz-Zentrum für Informatik |doi=10.4230/LIPIcs.STACS.2017.47|doi-access=free |isbn=978-3-95977-028-6 }}</ref> * all first-order reducts of homogenous undirected graphs,<ref>{{Cite journal |last1=Bodirsky |first1=Manuel |last2=Martin |first2=Barnaby |last3=Pinsker |first3=Michael |last4=Pongrácz |first4=András |date=January 2019 |title=Constraint Satisfaction Problems for Reducts of Homogeneous Graphs |url=https://epubs.siam.org/doi/10.1137/16M1082974 |journal=SIAM Journal on Computing |language=en |volume=48 |issue=4 |pages=1224–1264 |doi=10.1137/16M1082974 |issn=0097-5397|arxiv=1602.05819 }}</ref> * all first-order reducts of all unary structures,<ref>{{Citation |last1=Bodirsky |first1=Manuel |title=A Dichotomy for First-Order Reducts of Unary Structures |date=2018-05-20 |doi=10.23638/LMCS-14(2:13)2018 |last2=Mottet |first2=Antoine|journal=Logical Methods in Computer Science |volume=14 |issue=2 |arxiv=1601.04520 }}</ref> * all CSPs in the complexity class MMSNP.<ref>{{Cite book |last1=Bodirsky |first1=Manuel |last2=Madelaine |first2=Florent |last3=Mottet |first3=Antoine |chapter=A universal-algebraic proof of the complexity dichotomy for Monotone Monadic SNP |date=2018-07-09 |title=Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science |chapter-url=https://doi.org/10.1145/3209108.3209156 |series=LICS '18 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=105–114 |doi=10.1145/3209108.3209156 |arxiv=1802.03255 |isbn=978-1-4503-5583-4}}</ref> Most classes of CSPs that are known to be tractable are those where the [[hypergraph]] of constraints has bounded [[treewidth]],<ref>{{Cite journal |last1=Barto |first1=Libor |last2=Kozik |first2=Marcin |date=2014-01-01 |title=Constraint Satisfaction Problems Solvable by Local Consistency Methods |url=https://doi.org/10.1145/2556646 |journal=J. ACM |volume=61 |issue=1 |pages=3:1–3:19 |doi=10.1145/2556646 |issn=0004-5411}}</ref> or where the constraints have arbitrary form but there exist equationally non-trivial polymorphisms of the set of constraint relations.<ref>{{Cite book |last=Bodirsky |first=Manuel |url=https://www.cambridge.org/core/books/complexity-of-infinitedomain-constraint-satisfaction/8E6E86C8F8C5C534440266EFB9E584D3 |title=Complexity of Infinite-Domain Constraint Satisfaction |date=2021 |publisher=Cambridge University Press |isbn=978-1-107-04284-1 |series=Lecture Notes in Logic |location=Cambridge}}</ref> An ''infinite-domain dichotomy conjecture''<ref>{{Cite journal |last1=Bodirsky |first1=Manuel |last2=Pinsker |first2=Michael |last3=Pongrácz |first3=András |date=March 2021 |title=Projective Clone Homomorphisms |url=https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/abs/projective-clone-homomorphisms/3654D0B62D3C45DF6DBD93DDC57B8B02 |journal=The Journal of Symbolic Logic |language=en |volume=86 |issue=1 |pages=148–161 |doi=10.1017/jsl.2019.23 |issn=0022-4812|arxiv=1409.4601 |hdl=2437/268560 }}</ref> has been formulated for all CSPs of reducts of finitely bounded homogenous structures, stating that the CSP of such a structure is in P if and only if its [[Clone (algebra)|polymorphism clone]] is equationally non-trivial, and NP-hard otherwise. The complexity of such infinite-domain CSPs as well as of other generalisations (Valued CSPs, Quantified CSPs, Promise CSPs) is still an area of active research.<ref>{{cite arXiv |last=Pinsker |first=Michael |title=Current Challenges in Infinite-Domain Constraint Satisfaction: Dilemmas of the Infinite Sheep |date=2022-03-31 |class=cs.LO |eprint=2203.17182}}</ref>[https://tu-dresden.de/tu-dresden/newsportal/news/erc-synergy-grant-fuer-pococop-komplexitaet-von-berechnungen?set_language=en][https://www.tuwien.at/tu-wien/aktuelles/news/erc-synergy-grant-die-komplexitaet-von-berechnungen] Every CSP can also be considered as a [[conjunctive query]] containment problem.<ref>{{Cite journal| last1 = Kolaitis| first1 = Phokion G.| last2 = Vardi| first2 = Moshe Y.| author-link2 = Moshe Y. Vardi| title = Conjunctive-Query Containment and Constraint Satisfaction| journal = [[Journal of Computer and System Sciences]]| volume = 61| issue = 2| pages = 302–332| year = 2000| doi = 10.1006/jcss.2000.1713 | doi-access = free}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)