Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous functional calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications == The following applications are typical and very simple examples of the numerous applications of the continuous functional calculus: === Spectrum === Let <math>\mathcal{A}</math> be a C*-algebra and <math>a \in \mathcal{A}_N</math> a normal element. Then the following applies to the spectrum {{nowrap|<math>\sigma(a)</math>:{{sfn|Kadison|Ringrose|1983|p=271}}}} * <math>a</math> is self-adjoint if and only if {{nowrap|<math>\sigma(a) \subseteq \R</math>.}} * <math>a</math> is unitary if and only if {{nowrap|<math>\sigma(a) \subseteq \mathbb{T} = \{ \lambda \in \C \mid \left\| \lambda \right\| = 1 \}</math>.}} * <math>a</math> is a projection if and only if {{nowrap|<math>\sigma(a) \subseteq \{ 0, 1 \}</math>.}} ''Proof.''{{sfn|Kadison|Ringrose|1983|p=272}} The continuous functional calculus <math>\Phi_a</math> for the normal element <math>a \in \mathcal{A}</math> is a *-homomorphism with <math>\Phi_a (\operatorname{Id}) = a</math> and thus <math>a</math> is self-adjoint/unitary/a projection if <math>\operatorname{Id} \in C( \sigma(a))</math> is also self-adjoint/unitary/a projection. Exactly then <math>\operatorname{Id}</math> is self-adjoint if <math>z = \text{Id}(z) = \overline{\text{Id}}(z) = \overline{z}</math> holds for all <math>z \in \sigma(a)</math>, i.e. if <math>\sigma(a)</math> is real. Exactly then <math>\text{Id}</math> is unitary if <math>1 = \text{Id}(z) \overline{\operatorname{Id}}(z) = z \overline{z} = |z|^2</math> holds for all <math>z \in \sigma(a)</math>, therefore {{nowrap|<math>\sigma(a) \subseteq \{ \lambda \in \C \ | \ \left\| \lambda \right\| = 1 \}</math>.}} Exactly then <math>\text{Id}</math> is a projection if and only if <math>(\operatorname{Id}(z))^2 = \operatorname{Id}}(z) = \overline{\operatorname{Id}(z)</math>, that is <math>z^2 = z = \overline{z}</math> for all <math>z \in \sigma(a)</math>, i.e. <math>\sigma(a) \subseteq \{ 0,1 \}</math> === Roots === Let <math>a</math> be a positive element of a C*-algebra {{nowrap|<math>\mathcal{A}</math>.}} Then for every <math>n \in \mathbb{N}</math> there exists a uniquely determined positive element <math>b \in \mathcal{A}_+</math> with <math>b^n =a</math>, i.e. a unique <math>n</math>-th {{nowrap|root.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}} ''Proof.'' For each <math>n \in \mathbb{N}</math>, the root function <math>f_n \colon \R_0^+ \to \R_0^+, x \mapsto \sqrt[n]x</math> is a continuous function on {{nowrap|<math>\sigma (a) \subseteq \R_0^+</math>.}} If <math>b \; \colon = f_n (a)</math> is defined using the continuous functional calculus, then <math>b^n = (f_n(a))^n = (f_n^n)(a) = \operatorname{Id}_{\sigma(a)}(a)=a</math> follows from the properties of the calculus. From the spectral mapping theorem follows <math>\sigma(b) = \sigma(f_n(a)) = f_n(\sigma(a)) \subseteq [0,\infty)</math>, i.e. <math>b</math> is {{nowrap|positive.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}} If <math>c \in \mathcal{A}_+</math> is another positive element with <math>c^n = a = b^n</math>, then <math>c = f_n (c^n) = f_n(b^n) = b</math> holds, as the root function on the positive real numbers is an inverse function to the function {{nowrap|<math>z \mapsto z^n</math>.{{sfn|Kadison|Ringrose|1983|p=275}}}} If <math>a \in \mathcal{A}_{sa}</math> is a self-adjoint element, then at least for every odd <math>n \in \N</math> there is a uniquely determined self-adjoint element <math>b \in \mathcal{A}_{sa}</math> with {{nowrap|<math>b^n = a</math>.{{sfn|Blackadar|2006|p=63}}}} Similarly, for a positive element <math>a</math> of a C*-algebra <math>\mathcal{A}</math>, each <math>\alpha \geq 0</math> defines a uniquely determined positive element <math>a^\alpha</math> of <math>C^*(a)</math>, such that <math>a^\alpha a^\beta = a^{\alpha + \beta}</math> holds for all {{nowrap|<math>\alpha, \beta \geq 0</math>.}} If <math>a</math> is invertible, this can also be extended to negative values of {{nowrap|<math>\alpha</math>.{{sfn|Kadison|Ringrose|1983|pages=248-249}}}} === Absolute value === If <math>a \in \mathcal{A}</math>, then the element <math>a^*a</math> is positive, so that the absolute value can be defined by the continuous functional calculus <math>|a| = \sqrt{a^*a}</math>, since it is continuous on the positive real {{nowrap|numbers.{{sfn|Blackadar|2006|pages=64-65}}}} Let <math>a</math> be a self-adjoint element of a C*-algebra <math>\mathcal{A}</math>, then there exist positive elements <math>a_+,a_- \in \mathcal{A}_+</math>, such that <math>a = a_+ - a_-</math> with <math>a_+ a_- = a_- a_+ = 0</math> holds. The elements <math>a_+</math> and <math>a_-</math> are also referred to as the {{nowrap|[[positive and negative parts]].{{sfn|Kadison|Ringrose|1983|p=246}}}} In addition, <math>|a| = a_+ + a_-</math> {{nowrap|holds.{{sfn|Dixmier|1977|p=15}}}} ''Proof.'' The functions <math>f_+(z) = \max(z,0)</math> and <math>f_-(z) = -\min(z, 0)</math> are continuous functions on <math>\sigma(a) \subseteq \R</math> with <math>\operatorname{Id} (z) = z = f_+(z) -f_-(z)</math> and {{nowrap|<math>f_+(z)f_-(z) = f_-(z)f_+(z) = 0</math>.}} Put <math>a_+ = f_+(a)</math> and <math>a_- = f_-(a)</math>. According to the spectral mapping theorem, <math>a_+</math> and <math>a_-</math> are positive elements for which <math>a = \operatorname{Id}(a) = (f_+ - f_-) (a) = f_+(a) - f_-(a) = a_+ - a_-</math> and <math>a_+ a_- = f_+(a)f_-(a) = (f_+f_-)(a) = 0 = (f_-f_+)(a) = f_-(a)f_+(a) = a_- a_+</math> {{nowrap|holds.{{sfn|Kadison|Ringrose|1983|p=246}}}} Furthermore, <math display="inline">f_+(z) + f_-(z) = |z| = \sqrt{z^* z} = \sqrt{z^2}</math>, such that {{nowrap|<math display="inline">a_+ + a_- = f_+(a) + f_-(a) = |a| = \sqrt{a^* a} = \sqrt{a^2}</math> holds.{{sfn|Dixmier|1977|p=15}}}} === Unitary elements === If <math>a</math> is a self-adjoint element of a C*-algebra <math>\mathcal{A}</math> with unit element <math>e</math>, then <math>u = \mathrm{e}^{\mathrm{i} a}</math> is unitary, where <math>\mathrm{i}</math> denotes the [[imaginary unit]]. Conversely, if <math>u \in \mathcal{A}_U</math> is an unitary element, with the restriction that the spectrum is a [[Subset|proper subset]] of the unit circle, i.e. <math>\sigma(u) \subsetneq \mathbb{T}</math>, there exists a self-adjoint element <math>a \in \mathcal{A}_{sa}</math> with {{nowrap|<math>u = \mathrm{e}^{\mathrm{i} a}</math>.{{sfn|Kadison|Ringrose|1983|pages=274-275}}}} ''Proof.''{{sfn|Kadison|Ringrose|1983|pages=274-275}} It is <math>u = f(a)</math> with <math>f \colon \R \to \C,\ x \mapsto \mathrm{e}^{\mathrm{i}x}</math>, since <math>a</math> is self-adjoint, it follows that <math>\sigma(a) \subset \R</math>, i.e. <math>f</math> is a function on the spectrum of {{nowrap|<math>a</math>.}} Since <math>f\cdot \overline{f} = \overline{f}\cdot f = 1</math>, using the functional calculus <math>uu^* = u^*u = e</math> follows, i.e. <math>u</math> is unitary. Since for the other statement there is a <math>z_0 \in \mathbb{T}</math>, such that <math>\sigma(u) \subseteq \{ \mathrm{e}^{\mathrm{i} z} \mid z_0 \leq z \leq z_0 + 2 \pi \}</math> the function <math>f(\mathrm{e}^{\mathrm{i} z}) = z</math> is a real-valued continuous function on the spectrum <math>\sigma(u)</math> for <math>z_0 \leq z \leq z_0 + 2 \pi</math>, such that <math>a = f(u)</math> is a self-adjoint element that satisfies {{nowrap|<math>\mathrm{e}^{\mathrm{i} a} = \mathrm{e}^{\mathrm{i} f(u)} = u</math>.}} === Spectral decomposition theorem === Let <math>\mathcal{A}</math> be an unital C*-algebra and <math>a \in \mathcal{A}_N</math> a normal element. Let the spectrum consist of <math>n</math> pairwise [[Disjoint sets|disjoint]] [[Closed set|closed]] subsets <math>\sigma_k \subset \C</math> for all <math>1 \leq k \leq n</math>, i.e. {{nowrap|<math>\sigma(a)=\sigma_1 \sqcup \cdots \sqcup \sigma_n</math>.}} Then there exist projections <math>p_1, \ldots, p_n \in \mathcal{A}</math> that have the following properties for all {{nowrap|<math>1 \leq j,k \leq n</math>:{{sfn|Kaballo|2014|p=375}}}} * For the spectrum, <math>\sigma(p_k) = \sigma_k</math> holds. * The projections commutate with <math>a</math>, i.e. {{nowrap|<math>p_ka=ap_k</math>.}} * The projections are [[Orthogonality|orthogonal]], i.e. {{nowrap|<math>p_jp_k=\delta_{jk} p_k</math>.}} * The sum of the projections is the unit element, i.e. {{nowrap|<math display="inline">\sum_{k=1}^n p_k = e</math>.}} In particular, there is a decomposition <math display="inline">a = \sum_{k=1}^n a_k</math> for which <math>\sigma(a_k) = \sigma_k</math> holds for all {{nowrap|<math>1 \leq k \leq n</math>.}} ''Proof.''{{sfn|Kaballo|2014|p=375}} Since all <math>\sigma_k</math> are closed, the [[Indicator function|characteristic functions]] <math>\chi_{\sigma_k}</math> are continuous on {{nowrap|<math>\sigma(a)</math>.}} Now let <math>p_k := \chi_{\sigma_k} (a)</math> be defined using the continuous functional. As the <math>\sigma_k</math> are pairwise disjoint, <math>\chi_{\sigma_j} \chi_{\sigma_k} = \delta_{jk} \chi_{\sigma_k}</math> and <math display="inline">\sum_{k=1}^n \chi_{\sigma_k} = \chi_{\cup_{k=1}^n \sigma_k} = \chi_{\sigma(a)} = \textbf{1}</math> holds and thus the <math>p_k</math> satisfy the claimed properties, as can be seen from the properties of the continuous functional equation. For the last statement, let {{nowrap|<math>a_k = a p_k = \operatorname{Id} (a) \cdot \chi_{\sigma_k} (a) = (\operatorname{Id} \cdot \chi_{\sigma_k}) (a)</math>.}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)