Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Continuous wavelet transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications of the wavelet transform== One of the most popular applications of wavelet transform is image compression. The advantage of using wavelet-based coding in image compression is that it provides significant improvements in picture quality at higher compression ratios over conventional techniques. Since wavelet transform has the ability to decompose complex information and patterns into elementary forms, it is commonly used in acoustics processing and pattern recognition, but it has been also proposed as an instantaneous frequency estimator.<ref>{{Cite journal|last1=Sejdic|first1=E.|last2=Djurovic|first2=I.|last3=Stankovic|first3=L.|date=August 2008|title=Quantitative Performance Analysis of Scalogram as Instantaneous Frequency Estimator|journal=IEEE Transactions on Signal Processing|volume=56|issue=8|pages=3837–3845|doi=10.1109/TSP.2008.924856|bibcode=2008ITSP...56.3837S|s2cid=16396084|issn=1053-587X}}</ref> Moreover, wavelet transforms can be applied to the following scientific research areas: edge and corner detection, partial differential equation solving, transient detection, filter design, [[electrocardiogram]] (ECG) analysis, texture analysis, business information analysis and gait analysis.<ref>[https://www.youtube.com/watch?v=DTpEVQSEBBk "Novel method for stride length estimation with body area network accelerometers"], ''IEEE BioWireless 2011'', pp. 79–82</ref> Wavelet transforms can also be used in [[Electroencephalography]] (EEG) data analysis to identify epileptic spikes resulting from [[epilepsy]].<ref>{{Cite journal|last1=Iranmanesh|first1=Saam|last2=Rodriguez-Villegas|first2=Esther|author-link2=Esther Rodriguez-Villegas|year=2017|title=A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy|journal=IEEE Journal of Solid-State Circuits|volume=52|issue=9|pages=2362–2373|doi=10.1109/JSSC.2017.2720636|bibcode=2017IJSSC..52.2362I|hdl-access=free|hdl=10044/1/48764|s2cid=24852887}}</ref> Wavelet transform has been also successfully used for the interpretation of time series of landslides<ref>{{Cite journal|last1=Tomás|first1=R.|last2=Li|first2=Z.|last3=Lopez-Sanchez|first3=J. M.|last4=Liu|first4=P.|last5=Singleton|first5=A.|date=2016-06-01|title=Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide|journal=Landslides|language=en|volume=13|issue=3|pages=437–450|doi=10.1007/s10346-015-0589-y|bibcode=2016Lands..13..437T |issn=1612-510X|hdl=10045/62160|s2cid=129736286|url=http://rua.ua.es/dspace/bitstream/10045/62160/5/2016_Tomas_etal_Landslides_rev.pdf|hdl-access=free}}</ref> and land subsidence,<ref>{{Cite journal |last1=Tomás |first1=Roberto |last2=Pastor |first2=José Luis |last3=Béjar-Pizarro |first3=Marta |last4=Bonì |first4=Roberta |last5=Ezquerro |first5=Pablo |last6=Fernández-Merodo |first6=José Antonio |last7=Guardiola-Albert |first7=Carolina |last8=Herrera |first8=Gerardo |last9=Meisina |first9=Claudia |last10=Teatini |first10=Pietro |last11=Zucca |first11=Francesco |last12=Zoccarato |first12=Claudia |last13=Franceschini |first13=Andrea |date=2020-04-22 |title=Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study |url=https://piahs.copernicus.org/articles/382/353/2020/ |journal=Proceedings of the International Association of Hydrological Sciences |language=en |volume=382 |pages=353–359 |doi=10.5194/piahs-382-353-2020 |doi-access=free |bibcode=2020PIAHS.382..353T |issn=2199-899X|hdl=11577/3338112 |hdl-access=free }}</ref> and for calculating the changing periodicities of epidemics.<ref>{{Citation |last=von Csefalvay |first=Chris |title=Temporal dynamics of epidemics |date=2023 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780323953894000165 |work=Computational Modeling of Infectious Disease |pages=217–255 |publisher=Elsevier |language=en |doi=10.1016/b978-0-32-395389-4.00016-5 |isbn=978-0-323-95389-4 |access-date=2023-02-27}}</ref> Continuous Wavelet Transform (CWT) is very efficient in determining the damping ratio of oscillating signals (e.g. identification of damping in dynamic systems). CWT is also very resistant to the noise in the signal.<ref>Slavic, J and Simonovski, I and M. Boltezar, [http://lab.fs.uni-lj.si/ladisk/?what=abstract&ID=11 Damping identification using a continuous wavelet transform: application to real data]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)