Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convergence of random variables
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties=== * Since <math>F(a) = \mathbb{P}(X \le a)</math>, the convergence in distribution means that the probability for {{mvar|X<sub>n</sub>}} to be in a given range is approximately equal to the probability that the value of {{mvar|X}} is in that range, provided {{mvar|n}} is [[sufficiently large]]. *In general, convergence in distribution does not imply that the sequence of corresponding [[probability density function]]s will also converge. As an example one may consider random variables with densities {{math|''f<sub>n</sub>''(''x'') {{=}} (1 + cos(2''πnx''))'''1'''<sub>(0,1)</sub>}}. These random variables converge in distribution to a uniform ''U''(0, 1), whereas their densities do not converge at all.<ref>{{harvnb|Romano|Siegel|1985|loc=Example 5.26}}</ref> ** However, according to ''Scheffé’s theorem'', convergence of the [[probability density function]]s implies convergence in distribution.<ref name="Durrett">{{cite book|last1=Durrett|first1=Rick|title=Probability: Theory and Examples|date=2010|page=84}}</ref> * The [[portmanteau lemma]] provides several equivalent definitions of convergence in distribution. Although these definitions are less intuitive, they are used to prove a number of statistical theorems. The lemma states that {{math|{''X<sub>n</sub>''} }} converges in distribution to {{mvar|X}} if and only if any of the following statements are true:<ref>{{harvnb|van der Vaart|1998|loc=Lemma 2.2}}</ref> ** <math>\mathbb{P}(X_n \le x) \to \mathbb{P}(X \le x)</math> for all continuity points of <math>x\mapsto \mathbb{P}(X \le x)</math>; ** <math>\mathbb{E}f(X_n) \to \mathbb{E}f(X)</math> for all [[Bounded function|bounded]], [[continuous function]]s <math>f</math> (where <math>\mathbb{E}</math> denotes the [[expected value]] operator); ** <math>\mathbb{E}f(X_n) \to \mathbb{E}f(X)</math> for all bounded, [[Lipschitz function]]s <math>f</math>; ** <math>\lim\inf \mathbb{E}f(X_n) \ge \mathbb{E}f(X)</math> for all nonnegative, continuous functions <math>f</math>; ** <math>\lim\inf \mathbb{P}(X_n \in G) \ge \mathbb{P}(X \in G)</math> for every [[open set]] <math>G</math>; ** <math>\lim\sup \mathbb{P}(X_n \in F) \le \mathbb{P}(X \in F)</math> for every [[closed set]] <math>F</math>; ** <math>\mathbb{P}(X_n \in B) \to \mathbb{P}(X \in B)</math> for all [[continuity set]]s <math>B</math> of random variable <math>X</math>; ** <math>\limsup \mathbb{E}f(X_n) \le \mathbb{E}f(X)</math> for every [[upper semi-continuous]] function <math>f</math> bounded above;{{citation needed|date=February 2013}} ** <math>\liminf \mathbb{E}f(X_n) \ge \mathbb{E}f(X)</math> for every [[lower semi-continuous]] function <math>f</math> bounded below.{{citation needed|date=February 2013}} * The [[continuous mapping theorem]] states that for a continuous function {{mvar|g}}, if the sequence {{math|{''X<sub>n</sub>''} }} converges in distribution to {{mvar|X}}, then {{math|{''g''(''X<sub>n</sub>'')} }} converges in distribution to {{math|''g''(''X'')}}. ** Note however that convergence in distribution of {{math|{''X<sub>n</sub>''} }} to {{mvar|X}} and {{math|{''Y<sub>n</sub>''} }} to {{mvar|Y}} does in general ''not'' imply convergence in distribution of {{math|{''X<sub>n</sub>'' + ''Y<sub>n</sub>''} }} to {{math|''X'' + ''Y''}} or of {{math|{''X<sub>n</sub>Y<sub>n</sub>''} }} to {{mvar|XY}}. * [[Lévy’s continuity theorem]]: The sequence {{math|{''X<sub>n</sub>''} }} converges in distribution to {{mvar|X}} if and only if the sequence of corresponding [[characteristic function (probability theory)|characteristic function]]s {{math|{''φ<sub>n</sub>''} }} [[pointwise convergence|converges pointwise]] to the characteristic function {{mvar|φ}} of {{mvar|X}}. * Convergence in distribution is [[metrizable]] by the [[Lévy–Prokhorov metric]]. * A natural link to convergence in distribution is the [[Skorokhod's representation theorem]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)