Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Convolution theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Periodic convolution === <math>U(f)</math> and <math>V(f),</math> as defined above, are periodic, with a period of 1. Consider <math>N</math>-periodic sequences <math>u_{_N}</math> and <math>v_{_N}</math>''':''' :<math>u_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u[n-mN]</math> and <math>v_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} v[n-mN], \quad n \in \mathbb{Z}.</math> These functions occur as the result of sampling <math>U</math> and <math>V</math> at intervals of <math>1/N</math> and performing an inverse '''[[discrete Fourier transform]]''' (DFT) on <math>N</math> samples (see {{slink|Discrete-time_Fourier_transform#Sampling_the_DTFT|nopage=y}}). The discrete convolution''':''' :<math>\{u_{_N} * v\}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u_{_N}[m]\cdot v[n-m] \equiv \sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]</math> is also <math>N</math>-periodic, and is called a '''[[periodic convolution]]'''. Redefining the <math>\mathcal{F}</math> operator as the <math>N</math>-length DFT, the corresponding theorem is:<ref name="Rabiner" /><ref name="Oppenheim" />{{rp|p. 548}} {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\mathcal{F}\{u_{_N} * v\}[k] =\ \underbrace{\mathcal{F}\{u_{_N}\}[k]}_{U(k/N)} \cdot \underbrace{\mathcal{F}\{v_{_N}\}[k]}_{V(k/N)}, \quad k \in \mathbb{Z}.</math> |{{EquationRef|Eq.4a}} }} }} And therefore''':''' {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u_{_N}\} \cdot \mathcal{F}\{v_{_N}\}\}.</math> |{{EquationRef|Eq.4b}} }} }} Under the right conditions, it is possible for this <math>N</math>-length sequence to contain a distortion-free segment of a <math>u*v</math> convolution. But when the non-zero portion of the <math>u(n)</math> or <math>v(n)</math> sequence is equal or longer than <math>N,</math> some distortion is inevitable. Such is the case when the <math>V(k/N)</math> sequence is obtained by directly sampling the DTFT of the infinitely long {{slink|Hilbert transform|Discrete Hilbert transform|nopage=y}} [[impulse response]].{{efn-ua |1=An example is the [[MATLAB]] function, '''[http://www.mathworks.com/help/toolbox/signal/ref/hilbert.html;jsessionid=67ed4e69e9729363548abed31054 hilbert(u,N)]'''.}} For <math>u</math> and <math>v</math> sequences whose non-zero duration is less than or equal to <math>N,</math> a final simplification is: {{Equation box 1 |title='''[[Circular convolution]]''' |indent=|cellpadding=6 |border= |border colour=#0073CF |background colour=#F5FFFA |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\}.</math> |{{EquationRef|Eq.4c}} }} }} This form is often used to efficiently implement numerical convolution by [[computer]]. (see {{slink|Convolution|Fast convolution algorithms|nopage=y}} and {{slink|Circular_convolution|Example|nopage=y}}) As a partial reciprocal, it has been shown <ref>{{cite book |last1=Amiot |first1=Emmanuel |title=Music through Fourier Space |series=Computational Music Science |date=2016 |publisher=Springer |location=Zürich |isbn=978-3-319-45581-5 |page=8 |doi=10.1007/978-3-319-45581-5 |s2cid=6224021 |url=https://link.springer.com/book/10.1007/978-3-319-45581-5 |ref=Theorem 1.11}}</ref> that any linear transform that turns convolution into a product is the DFT (up to a permutation of coefficients). {{Collapse top|title=Derivations of Eq.4}} A time-domain derivation proceeds as follows''':''' :<math> \begin{align} \scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k] &\triangleq \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]\right) e^{-i 2\pi kn/N}\\ &= \sum_{m=0}^{N-1} u_{_N}[m] \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi kn/N}\right)\\ &= \sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N} \underbrace{ \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi k(n-m)/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\quad \scriptstyle \text{due to periodicity}}\\ &= \underbrace{ \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]} \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right). \end{align} </math> A frequency-domain derivation follows from {{slink|DTFT|Periodic data|nopage=y}}, which indicates that the DTFTs can be written as''':''' :<math> \mathcal{F}\{u_{_N} * v\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k]\right)\cdot \delta\left(f-k/N\right). \quad \scriptstyle \mathsf{(Eq.5a)} </math> :<math> \mathcal{F}\{u_{_N}\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \delta\left(f-k/N\right). </math> The product with <math>V(f)</math> is thereby reduced to a discrete-frequency function''':''' :<math> \begin{align} \mathcal{F}\{u_{_N} * v\}(f) &= G_{_N}(f) V(f) \\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(f)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(k/N)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right) \cdot \delta\left(f-k/N\right), \quad \scriptstyle \mathsf{(Eq.5b)} \end{align} </math> where the equivalence of <math>V(k/N)</math> and <math>\left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right)</math> follows from {{slink|DTFT|Sampling the DTFT|nopage=y}}. Therefore, the equivalence of (5a) and (5b) requires: :<math>\scriptstyle{\rm DFT} \displaystyle {\{u_{_N} * v\}[k]} = \left(\scriptstyle{\rm DFT} \displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right).</math> <br>We can also verify the inverse DTFT of (5b)''':''' :<math> \begin{align} (u_{_N} * v)[n] & = \int_{0}^{1} \left(\frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \delta\left(f-k/N\right)\right)\cdot e^{i 2 \pi f n} df \\ & = \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \underbrace{\left(\int_{0}^{1} \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\right)}_{\text{0, for} \ k\ \notin\ [0,\ N)} \\ & = \frac{1}{N} \sum_{k=0}^{N-1} \bigg(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\bigg)\cdot e^{i 2 \pi \frac{n}{N} k}\\ &=\ \scriptstyle{\rm DFT}^{-1} \displaystyle \bigg( \scriptstyle{\rm DFT}\displaystyle \{u_{_N}\}\cdot \scriptstyle{\rm DFT}\displaystyle \{v_{_N}\} \bigg). \end{align} </math> {{Collapse bottom}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)