Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Conway group
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Sublattice groups== Conway and Thompson found that four recently discovered sporadic simple groups, described in conference proceedings {{harv|Brauer|Sah|1969}}, were isomorphic to subgroups or quotients of subgroups of Co<sub>0</sub>. Conway himself employed a notation for stabilizers of points and subspaces where he prefixed a dot. Exceptional were '''.0''' and '''.1''', being Co<sub>0</sub> and Co<sub>1</sub>. For integer {{nowrap|'''n''' β₯ 2}} let '''.n''' denote the stabilizer of a point of type '''n''' (see above) in the Leech lattice. Conway then named stabilizers of planes defined by triangles having the origin as a vertex. Let '''.hkl''' be the pointwise stabilizer of a triangle with edges (differences of vertices) of types '''h''', '''k''' and '''l'''. The triangle is commonly called an '''h-k-l triangle'''. In the simplest cases Co<sub>0</sub> is transitive on the points or triangles in question and stabilizer groups are defined up to conjugacy. Conway identified '''.322''' with the '''[[McLaughlin group (mathematics)|McLaughlin group]]''' McL (order {{val|fmt=commas|898,128,000}}) and '''.332''' with the '''[[HigmanβSims group]]''' HS (order {{val|fmt=commas|44,352,000}}); both of these had recently been discovered. Here is a table<ref>Conway & Sloane (1999), p. 291</ref><ref>Griess (1998), p. 126</ref> of some sublattice groups: {| class="wikitable" style="margin:1em auto;" |- ! Name ! Order ! Structure ! Example vertices |- | β’2 || 2<sup>18</sup> 3<sup>6</sup> 5<sup>3</sup> 7 11 23 || Co<sub>2</sub> || (β3, 1<sup>23</sup>) |- | β’3 || 2<sup>10</sup> 3<sup>7</sup> 5<sup>3</sup> 7 11 23 || Co<sub>3</sub> || (5, 1<sup>23</sup>) |- | β’4 || 2<sup>18</sup> 3<sup>2</sup> 5 7 11 23 || 2<sup>11</sup>:M<sub>23</sub> ||(8, 0<sup>23</sup>) |- | β’222 || 2<sup>15</sup> 3<sup>6</sup> 5 7 11 || PSU<sub>6</sub>(2) β [[Fischer group#3-transposition groups|Fi<sub>21</sub>]] || (4, β4, 0<sup>22</sup>), (0, β4, 4, 0<sup>21</sup>) |- | β’322 || 2<sup>7</sup> 3<sup>6</sup> 5<sup>3</sup> 7 11 || McL || (5, 1<sup>23</sup>),(4, 4, 0<sup>22</sup>) |- | β’332 || 2<sup>9</sup> 3<sup>2</sup> 5<sup>3</sup> 7 11 || HS || (5, 1<sup>23</sup>), (4, β4, 0<sup>22</sup>) |- | β’333 || 2<sup>4</sup> 3<sup>7</sup> 5 11 || 3<sup>5</sup> M<sub>11</sub> || (5, 1<sup>23</sup>), (0, 2<sup>12</sup>, 0<sup>11</sup>) |- | β’422 || 2<sup>17</sup> 3<sup>2</sup> 5 7 11 || 2<sup>10</sup>:M<sub>22</sub> || (8, 0<sup>23</sup>), (4, 4, 0<sup>22</sup>) |- | β’432 || 2<sup>7</sup> 3<sup>2</sup> 5 7 11 23 ||M<sub>23</sub> || (8, 0<sup>23</sup>), (5, 1<sup>23</sup>) |- | β’433 || 2<sup>10</sup> 3<sup>2</sup> 5 7 || 2<sup>4</sup>.A<sub>8</sub> || (8, 0<sup>23</sup>), (4, 2<sup>7</sup>, β2, 0<sup>15</sup>) |- | β’442 || 2<sup>12</sup> 3<sup>2</sup> 5 7 || 2<sup>1+8</sup>.A<sub>7</sub> || (8, 0<sup>23</sup>), (6, β2<sup>7</sup>, 0<sup>16</sup>) |- | β’443 || 2<sup>7</sup> 3<sup>2</sup> 5 7 || M<sub>21</sub>:2 β PSL<sub>3</sub>(4):2 || (8, 0<sup>23</sup>), (5, β3, β3, 1<sup>21</sup>) |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)