Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Critical phenomena
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Critical dynamics== Critical phenomena may also appear for ''dynamic'' quantities, not only for ''static'' ones. In fact, the divergence of the characteristic ''time'' <math>\tau </math> of a system is directly related to the divergence of the thermal ''correlation length'' <math>\xi </math> by the introduction of a dynamical exponent ''z'' and the relation <math>\tau =\xi^{\,z}</math> .<ref>P. C. Hohenberg und B. I. Halperin, ''Theory of dynamic critical phenomena'' , Rev. Mod. Phys. 49 (1977) 435.</ref> The voluminous ''static universality class'' of a system splits into different, less voluminous ''dynamic universality classes'' with different values of ''z'' but a common static critical behaviour, and by approaching the critical point one may observe all kinds of slowing-down phenomena. The divergence of relaxation time <math>\tau</math> at criticality leads to singularities in various collective transport quantities, e.g., the interdiffusivity, [[Viscosity|shear viscosity]] <math>\eta\sim \xi^{x_\eta}</math>,<ref>{{Cite journal|last1=Roy|first1=Sutapa|last2=Dietrich|first2=S.|last3=Höfling|first3=Felix|date=2016-10-05|title=Structure and dynamics of binary liquid mixtures near their continuous demixing transitions|url=https://aip.scitation.org/doi/full/10.1063/1.4963771|journal=The Journal of Chemical Physics|volume=145|issue=13|pages=134505|doi=10.1063/1.4963771|pmid=27782419|arxiv=1606.05595|bibcode=2016JChPh.145m4505R|s2cid=37016085|issn=0021-9606}}</ref> and bulk viscosity <math>\zeta \sim \xi^{x_\zeta}</math>. The dynamic critical exponents follow certain scaling relations, viz., <math>z=d+x_\eta</math>, where d is the space dimension. There is only one independent dynamic critical exponent. Values of these exponents are dictated by several universality classes. According to the Hohenberg−Halperin nomenclature,<ref>{{Cite journal|last1=Hohenberg|first1=P. C.|last2=Halperin|first2=B. I.|date=1977-07-01|title=Theory of dynamic critical phenomena|journal=Reviews of Modern Physics|volume=49|issue=3|pages=435–479|doi=10.1103/RevModPhys.49.435|bibcode=1977RvMP...49..435H|s2cid=122636335 }}</ref> for the model H<ref>{{Cite journal|last1=Folk|first1=R|last2=Moser|first2=G|date=2006-05-31|title=Critical dynamics: a field-theoretical approach|journal=Journal of Physics A: Mathematical and General|volume=39|issue=24|pages=R207–R313|doi=10.1088/0305-4470/39/24/r01|issn=0305-4470}}</ref> universality class (fluids) <math>x_\eta \simeq 0.068, z \simeq 3.068</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)