Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cronbach's alpha
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Common misconceptions== {{Confusing|section|date=May 2023|talk=Talk:Cronbach's_alpha#"Common misconceptions" section is misleading|reason=it is unclear whether headings are true or false}} Application of Cronbach's alpha is not always straightforward and can give rise to common misconceptions, some of which are detailed here.<ref name="ChoKim" /> ===The value of Cronbach's alpha ranges between zero and one=== By definition, reliability cannot be less than zero and cannot be greater than one. Many textbooks mistakenly equate <math>\rho_{T}</math> with reliability and give an inaccurate [[explanation]] of its range. <math>\rho_{T}</math> can be less than reliability when applied to data that are not essentially tau-equivalent. Suppose that <math>X_2</math> copied the value of <math>X_1</math> as it is, and <math>X_3</math> copied by multiplying the value of <math>X_1</math> by -1. The covariance matrix between items is as follows, <math>\rho_{T}=-3</math>. {| class="wikitable" style="text-align: right;" |+ Observed covariance matrix |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> |- ! <math>X_1</math> | <math>1</math>||<math>1</math>||<math>-1</math> |- ! <math>X_2</math> | <math>1</math>|| <math>1</math>|| <math>-1</math> |- ! <math>X_3</math> | <math>-1</math>|| <math>-1</math>|| <math>1</math> |} Negative <math>\rho_{T}</math> can occur for reasons such as negative discrimination or mistakes in processing reversely scored items. Unlike <math>\rho_{T}</math>, SEM-based reliability coefficients (e.g., <math>\rho_{C}</math>) are always greater than or equal to zero. This anomaly was first pointed out by Cronbach (1943)<ref name="c1943">{{cite journal|first=L. J.|last=Cronbach|title=On estimates of test reliability|journal=Journal of Educational Psychology|volume=34|issue=8|pages=485β494|date=1943|doi=10.1037/h0058608}}</ref> to criticize <math>\rho_{T}</math>, but Cronbach (1951)<ref name="Cronbach"/> did not comment on this problem in his article that otherwise discussed potentially problematic issues related <math>\rho_{T}</math>.<ref name="c2004"/>{{rp|396}}<ref>{{Cite journal |last1=Waller |first1=Niels |last2=Revelle |first2=William |date=2023-05-25 |title=What are the mathematical bounds for coefficient Ξ±? |url=https://doi.apa.org/doi/10.1037/met0000583 |journal=Psychological Methods |language=en |doi=10.1037/met0000583 |pmid=37227892 |issn=1939-1463|url-access=subscription }}</ref> ===If there is no measurement error, the value of Cronbach's alpha is one.=== This anomaly also originates from the fact that <math>\rho_{T}</math> underestimates reliability. Suppose that <math>X_2</math> copied the value of <math>X_1</math> as it is, and <math>X_3</math> copied by multiplying the value of <math>X_1</math> by two. The covariance matrix between items is as follows, <math>\rho_{T}=0.9375</math>. {| class="wikitable" style="text-align: center;" |+ Observed covariance matrix |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> |- ! <math>X_1</math> | <math>1</math>||<math>1</math>||<math>2</math> |- ! <math>X_2</math> | <math>1</math>|| <math>1</math>|| <math>2</math> |- ! <math>X_3</math> | <math>2</math>|| <math>2</math>|| <math>4</math> |} For the above data, both <math>\rho_{P}</math> and <math>\rho_{C}</math> have a value of one. The above example is presented by Cho and Kim (2015).<ref name = ChoKim/> ===A high value of Cronbach's alpha indicates homogeneity between the items=== Many textbooks refer to <math>\rho_{T}</math> as an indicator of [[Homogeneity and heterogeneity (statistics)|homogeneity]]<ref>{{Cite web|title=APA Dictionary of Psychology|url=https://dictionary.apa.org/|access-date=2023-02-20|website=dictionary.apa.org|language=en|archive-date=2019-07-31|archive-url=https://web.archive.org/web/20190731124940/http://dictionary.apa.org/|url-status=live}}</ref> between items. This misconception stems from the inaccurate explanation of Cronbach (1951)<ref name = Cronbach/> that high <math>\rho_{T}</math> values show homogeneity between the items. Homogeneity is a term that is rarely used in modern literature, and related studies interpret the term as referring to uni-dimensionality. Several studies have provided proofs or counterexamples that high <math>\rho_{T}</math> values do not indicate uni-dimensionality.<ref name=Cortina>{{cite journal|first=J. M.|last=Cortina|title=What is coefficient alpha? An examination of theory and applications|journal=Journal of Applied Psychology|volume=78|issue=1|pages=98β104|date=1993|doi=10.1037/0021-9010.78.1.98}}</ref><ref name=ChoKim/><ref name=GLM>{{cite journal|last1=Green|first1=S. B.|last2=Lissitz|first2=R. W.|last3=Mulaik|first3=S. A.|title=Limitations of coefficient alpha as an Index of test unidimensionality|journal=Educational and Psychological Measurement|volume=37|issue=4|pages=827β838|date=1977|doi=10.1177/001316447703700403|s2cid=122986180}}</ref><ref>{{cite journal|first=R. P.|last=McDonald|title=The dimensionality of tests and items|journal=The British Journal of Mathematical and Statistical Psychology|volume=34|issue=1|pages=100β117|date=1981|doi=10.1111/j.2044-8317.1981.tb00621.x}}</ref><ref>{{cite journal|first=N.|last=Schmitt|title=Uses and abuses of coefficient alpha|journal=Psychological Assessment|volume=8|issue=4|pages=350β3|date=1996|doi=10.1037/1040-3590.8.4.350}}</ref><ref name=TBC>{{cite journal|last1=Ten Berge|first1=J. M. F.|last2=SoΔan|first2=G.|title=The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality|journal=Psychometrika|volume=69|issue=4|pages=613β625|date=2004|doi=10.1007/BF02289858|s2cid=122674001}}</ref> See counterexamples below. {| class="wikitable" style="text-align: right;" |+ Uni-dimensional data |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>3</math>||<math>3</math>||<math>3</math>||<math>3</math>||<math>3</math> |- ! <math>X_2</math> | <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_3</math> | <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_4</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math>|| <math>3</math> |- ! <math>X_5</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math>|| <math>3</math> |- ! <math>X_6</math> | <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>3</math>|| <math>10</math> |- |} <math>\rho_{T}=0.72</math> in the uni-dimensional data above. {| class="wikitable" style="text-align: right;" |+ Multidimensional data |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>6</math>||<math>6</math>||<math>1</math>||<math>1</math>||<math>1</math> |- ! <math>X_2</math> | <math>6</math>|| <math>10</math>|| <math>6</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_3</math> | <math>6</math>|| <math>6</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_4</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>6</math>|| <math>6</math> |- ! <math>X_5</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>6</math>|| <math>10</math>|| <math>6</math> |- ! <math>X_6</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>6</math>|| <math>6</math>|| <math>10</math> |- |} <math>\rho_{T}=0.72</math> in the multidimensional data above. {| class="wikitable" style="text-align: right;" |+ Multidimensional data with extremely high reliability |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>9</math>||<math>9</math>||<math>8</math>||<math>8</math>||<math>8</math> |- ! <math>X_2</math> | <math>9</math>|| <math>10</math>|| <math>9</math>|| <math>8</math>|| <math>8</math>|| <math>8</math> |- ! <math>X_3</math> | <math>9</math>|| <math>9</math>|| <math>10</math>|| <math>8</math>|| <math>8</math>|| <math>8</math> |- ! <math>X_4</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>10</math>|| <math>9</math>|| <math>9</math> |- ! <math>X_5</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>9</math>|| <math>10</math>|| <math>9</math> |- ! <math>X_6</math> | <math>8</math>|| <math>8</math>|| <math>8</math>|| <math>9</math>|| <math>9</math>|| <math>10</math> |- |} The above data have <math>\rho_{T}=0.9692</math>, but are multidimensional. {| class="wikitable" style="text-align: right;" |+ Uni-dimensional data with unacceptably low reliability |- ! ! <math>X_1</math> ! <math>X_2</math> ! <math>X_3</math> ! <math>X_4</math> ! <math>X_5</math> ! <math>X_6</math> |- ! <math>X_1</math> | <math>10</math>||<math>1</math>||<math>1</math>||<math>1</math>||<math>1</math>||<math>1</math> |- ! <math>X_2</math> | <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_3</math> | <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_4</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math>|| <math>1</math> |- ! <math>X_5</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math>|| <math>1</math> |- ! <math>X_6</math> | <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>1</math>|| <math>10</math> |- |} The above data have <math>\rho_{T}=0.4</math>, but are uni-dimensional. Uni-dimensionality is a prerequisite for <math>\rho_{T}</math>. One should check uni-dimensionality before calculating <math>\rho_{T}</math> rather than calculating <math>\rho_{T}</math> to check uni-dimensionality.<ref name = Cho/> ===A high value of Cronbach's alpha indicates internal consistency=== The term "internal consistency" is commonly used in the reliability literature, but its meaning is not clearly defined. The term is sometimes used to refer to a certain kind of reliability (e.g., internal consistency reliability), but it is unclear exactly which reliability coefficients are included here, in addition to <math>\rho_{T}</math>. Cronbach (1951)<ref name = Cronbach/> used the term in several senses without an explicit definition. Cho and Kim (2015)<ref name = ChoKim/> showed that <math>\rho_{T}</math> is not an indicator of any of these. ===Removing items using "alpha if item deleted" always increases reliability=== Removing an item using "alpha if item deleted"{{Clarify|reason=What is "alpha if item deleted"?|date=August 2022}} may result in 'alpha inflation,' where sample-level reliability is reported to be higher than population-level reliability.<ref name=KL>{{cite journal|last1=Kopalle|first1=P. K.|last2=Lehmann|first2=D. R.|title=Alpha inflation? The impact of eliminating scale items on Cronbach's alpha|journal=Organizational Behavior and Human Decision Processes|volume=70|issue=3|pages=189β197|date=1997|doi=10.1006/obhd.1997.2702|doi-access=free}}</ref> It may also reduce population-level reliability.<ref name=r2007>{{cite journal|first=T.|last=Raykov|title=Reliability if deleted, not 'alpha if deleted': Evaluation of scale reliability following component deletion|journal=The British Journal of Mathematical and Statistical Psychology|volume=60|issue=2|pages=201β216|date=2007|doi=10.1348/000711006X115954|pmid=17971267}}</ref> The elimination of less-reliable items should be based not only on a statistical basis but also on a theoretical and logical basis. It is also recommended that the whole sample be divided into two and cross-validated.<ref name=KL/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)