Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cross-correlation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Cross-correlation of random vectors== {{main|Cross-correlation matrix}} ===Definition=== For [[random vector]]s <math>\mathbf{X} = (X_1,\ldots,X_m)</math> and <math>\mathbf{Y} = (Y_1,\ldots,Y_n)</math>, each containing [[random element]]s whose [[expected value]] and [[variance]] exist, the '''cross-correlation matrix''' of <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> is defined by<ref name=Gubner>{{cite book |first=John A. |last=Gubner |year=2006 |title=Probability and Random Processes for Electrical and Computer Engineers |publisher=Cambridge University Press |isbn=978-0-521-86470-1}}</ref>{{rp|p.337}}<math display="block">\operatorname{R}_{\mathbf{X}\mathbf{Y}} \triangleq\ \operatorname{E}\left[\mathbf{X} \mathbf{Y}\right]</math>and has dimensions <math>m \times n</math>. Written component-wise:<math display="block">\operatorname{R}_{\mathbf{X}\mathbf{Y}} = \begin{bmatrix} \operatorname{E}[X_1 Y_1] & \operatorname{E}[X_1 Y_2] & \cdots & \operatorname{E}[X_1 Y_n] \\ \\ \operatorname{E}[X_2 Y_1] & \operatorname{E}[X_2 Y_2] & \cdots & \operatorname{E}[X_2 Y_n] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \operatorname{E}[X_m Y_1] & \operatorname{E}[X_m Y_2] & \cdots & \operatorname{E}[X_m Y_n] \end{bmatrix} </math>The random vectors <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> need not have the same dimension, and either might be a scalar value. Where <math>\operatorname{E}</math> is the [[expectation value]]. ===Example=== For example, if <math>\mathbf{X} = \left( X_1,X_2,X_3 \right)</math> and <math>\mathbf{Y} = \left( Y_1,Y_2 \right)</math> are random vectors, then <math>\operatorname{R}_{\mathbf{X}\mathbf{Y}}</math> is a <math>3 \times 2</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i Y_j]</math>. ===Definition for complex random vectors=== If <math>\mathbf{Z} = (Z_1,\ldots,Z_m)</math> and <math>\mathbf{W} = (W_1,\ldots,W_n)</math> are [[complex random vector]]s, each containing random variables whose expected value and variance exist, the cross-correlation matrix of <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> is defined by<math display="block">\operatorname{R}_{\mathbf{Z}\mathbf{W}} \triangleq\ \operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}]</math>where <math>{}^{\rm H}</math> denotes [[Hermitian transpose|Hermitian transposition]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)