Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cycle (graph theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Chordless cycle == [[File:Graph with Chordless and Chorded Cycles.svg|thumb|right|In this graph the green cycle AβBβCβDβEβFβA is chordless whereas the red cycle GβHβIβJβKβLβG is not. This is because the edge {K, I} is a chord.]] A [[chordless cycle]] in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle. An antihole is the [[complement graph|complement]] of a graph hole. Chordless cycles may be used to characterize [[perfect graph]]s: by the [[strong perfect graph theorem]], a graph is perfect if and only if none of its holes or antiholes have an odd number of vertices that is greater than three. A [[chordal graph]], a special type of perfect graph, has no holes of any size greater than three. The [[Girth (graph theory)|girth]] of a graph is the length of its shortest cycle; this cycle is necessarily chordless. [[Cage (graph theory)|Cages]] are defined as the smallest regular graphs with given combinations of degree and girth. A [[peripheral cycle]] is a cycle in a graph with the property that every two edges not on the cycle can be connected by a path whose interior vertices avoid the cycle. In a graph that is not formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)