Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Del
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Divergence=== The [[divergence]] of a [[vector field]] <math> \mathbf v(x, y, z) = v_x \hat\mathbf x + v_y \hat\mathbf y + v_z \hat\mathbf z </math> is a [[scalar field]] that can be represented as: :<math>\operatorname{div}\mathbf v = {\partial v_x \over \partial x} + {\partial v_y \over \partial y} + {\partial v_z \over \partial z} = \nabla \cdot \mathbf v </math> The divergence is roughly a measure of a vector field's increase in the direction it points; but more accurately, it is a measure of that field's tendency to converge toward or diverge from a point. The power of the del notation is shown by the following product rule: :<math> \nabla \cdot (f \mathbf v) = (\nabla f) \cdot \mathbf v + f (\nabla \cdot \mathbf v) </math> The formula for the [[vector product]] is slightly less intuitive, because this product is not commutative: :<math> \nabla \cdot (\mathbf u \times \mathbf v) = (\nabla \times \mathbf u) \cdot \mathbf v - \mathbf u \cdot (\nabla \times \mathbf v)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)